
7 D-AISS 136 COMPRING THE EFFECTIVENESS
OF SOFTHRE TESTING

/Il
STRATEGIES(U) MARYLAND UNIV COLLEGE PARK DEPT OF
COMPUTER SCIENCE V R BASIL! ET AL. MAY 95 CS-TR-1501

UNCLSSIFIED FOSR-TR-5-985F4962 99 SF/9/2 L

EhEEhhE1E

WL- 12.51111 1.0 _ ___ii

-~~ V~I~1.2
L~

liiIlia
.1 1.1 ~ NNW

111.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL SUREAU OF STANOAftOS - 1963 -A

k.7..

A1IO Th" 85- 0 8 0 5

technical Reoort TR-1501 Mav 1985

(0 Comparing the Effectiveness of

U Software Testing Strazegies

Victor R. Basili
.Richard W. Selby, Jr.

Department of Computer Science

Universitv of Mar':land .!v

College Park

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

DTIC
ELECTE

OCT tI In

8 :. UNIVERsITY OF MARYLAN .

COLLEGE PARK, MARYLAT4D .

20742

g3 0 11 079

-'........ ..

Technical Report TR-1501 May 1985

Comparing the Effectiveness of
Software Testing Strategies

Victor R. Basili
Richard W. Selby, Jr.

Department of Computer Science
University of Maryland

College Park

DTIC

B

KEYWORDS:
software testing, functional testing, structural testing, code reading,
off-line software review, empirical study, methodology evaluation,
software measurement

Research supported in part by the Air Force office of Scientific Research

-1 o

ontracc AFOSR-F49620-80-C-OOl and the National Aeronautics and Space
Administration Grant NSG-5123 to the University of Maryland. Computer
support provided in part by the facilities of NASA/Goddard Space Flight
Center and the Computer Science Center at the University of Maryland.

LDWDUTIONTATM A
Ajppwvod in publia i.1.cq

Sbrb t s U U i d i r D y ~ o

*.2

,17

ABSTRACT

This study compares the strategies of code reading, functional testing, and structur-

al testing In three aspects of software testing: fault detection effectiveness, fault detec-

tion cost, and classes of faults detected. Thirty two professional programmers and 42

advanced students applied the three techniques to four unit-sized programs In a frac-

tional factorial experimental design. The major results of this study are the following.

* 1) WIth the professional programmers, code reading detected more software faults and

*had a higher fault detection rate than did functional or structural testing, while func-

tional testing detected more faults than did structural testing, but functional and struc-

tural testing were not different In fault detection rate. 2) In one advanced student sub-

Ject group, code reading and functional testing were not different in faults found, but

were both superior to structural testing, while In the other advanced student subject

group there was no difference among the techniques. 3) With the advanced student sub-

Jects, the three techniques were not different In fault detection rate. 4) Number of

faults observed, fault detection rate, and total effort In detection depended on the type

of software tested. 5) Code reading detected more Interface faults than did the other

methods. 8) Functional testing detected more control faults than did the other

methods. 7) When asked to estimate the percentage of faults detected, code readers

* gave the most accurate estimates while functional testers gave the least accurate est'-

mates.

-o'

*.... ;T I ,.

Table of Contents

1 Introduction ... 1
2 Testing T'ech~niques...

*2.1 Investigation Goals .. 2
*3 Emirical Study ... 2
*3.1 Iterative Experimentation... 3
*3.2 Subject and Program/Fault Selection... 3

3.2.1 Subjects.. 3
3.2.2 Programs..5
3.2.3 Faults ..

3.2.3.1 Fault Origin... 8
3.2.3.2 Fault Classification... 7
3.2.3.3 Fault Description... 8

3.3 Experimental Design... 8
3.3.1 Independent and Dependent Variables...................................... 8
3.3.2 Analysis of Variance Model...g

3.4 Experimental Operation.............I.. 12
4 Data Analysis ... 14

4.1 Fault Detection Effectiveness... 14
4.1.1 Data Distributions ... 14
4.1.2 Number of Faults Detected ... 1s
4.1.3 Percentage of Faults Detected.. 15
4.1.4 Dependence on Software Type .. 18
4.1.5 Observable vs. Observed Faults .. 17
4.1.8 Dependence on Program Coverage... 17
4.1.7 Dependence on Programmer Expertise 18
4.1.8 Accuracy of Self-Estimates .. 1i
4.1.9 Dependence on Interactions ... 18
4.1.10 Summary of Fault Detection Effectiveness 19

4.2 Fault Detection Cost.. 19
4.2.1 Data Distributions ... 20
4.2.2 Fault Detection Rate and Total Time....................................... 20
4.2.3 Dependence on Software Type.. 21
4.2.4 Computer Costs .. 22
4.2.5 Dependence on Programmer Expertise.......................................22

* * v~ * . *~* % %*

4.2.8 Dependence on Interactions 23
4.2.7 Relationships Between Fault Detection Effectiveness and Cost 23
4.2.8 Summary or Fault Detection Cost ... 23

-4.3 Characterization or Faults Detected... 24
4.3.1 Omission vs. Commission Classification.................................... 24
4.3.2 Six-Part Fault Classification.......o... 25
4.3.3 Observable Fault Classification .. 25
4.3.4 Summary of Characterization of Faults Detected 28

5 Conclusions ... 28
*8 Acknowledgement .. 28
*7 Appendices .. 29

7.1 Appendix A. The Specifications for the Programs 29
*7.2 Appendix B. The Source Code for the Programs 32

*8 References... 50

1. Introduction

The processes of software testing and defect detection continue to challenge the

-software community. Even though the software testing and defect detection activities

are Inexact and Inadequately understood, they are crucial to the success of a software

project. The controlled study presented addresses the uncertainty of how to test soft-

ware effectively. In this investigation, common testing techniques were applied to
different types of software by subjects that had a wide range of professional experience.

This work Is Intended to characterize how testing effectiveness relates to several factors:

testing technique, software type, fault type, tester experience, and any interactions

among these factors. This examination extends previous work by incorporating different

testing techniques and a greater number of persons and programs, while broadening the

scope of Issues examined and adding statistical significance to the conclusions.

The following sections describe the testing techniques examined, the Investigation

* goals, the experimental design, operation, analysis, and conclusions.

2. Testing Techniques

To demonstrate that a particular program actually meets Its specifications, profes-

"" sional software developers currently utilize many different testing methods. Before

* presenting the goals for the empirical study comparing the popular techniques of code

'" reading, functional testing, and structural testing, a description will be given of the test-
Ing strategies and their different capabilities (see Figure 1.). In functional testing, which

Is a "black box" approach [Howden 80], a programmer constructs test data from the

program's specification through methods such as equivalence partitioning and boundary

* value analysis [Myers 79]. The programmer then executes the program and contrasts Its

actual behavior with that Indicated In the specification. In structural testing, which Is a
"white box" approach [Howden 78, Howden 81], a programmer Inspects the source code

• ?and then devises and executes test cases based on the percentage of the program's state-

ments or expressions executed (the "test set coverage") [Stucki 77]. The structural cov-

.oerage criteria used was 100% statement coverage. In code reradlng by stepwise abstrac-

tion, a person identifies prime subprograms In the software, determines their functions,

,* and composes these functions to determine a function for the entire program [Mills 72.

1

:-...-. .-.- ,:.' : .. :.:.: -.. :. ., - :,,.. , -,- : -.- :.-, .:,-.:.* ---- : -- . ,: -. :,., .: -. :.,,.. -, - .,.. -,- .,

[w 7

Linger, Mills & WItt 79]. The code reader then compares this derived function and the

specifications (the intended function). In order to contrast these various strategies, an

-empirical study has been conducted using the techniques of code reading, functional

* testing, and structural testing.

2.1. Investigation Goals

The goals of this study comprise three different aspects of software testing: fault

. detection effectiveness, fault detection cost, and classes of faults detected. An applica-

- tion of the goal/question/metric paradigm [Basill & Selby 84, Basill & Weiss 84] leads to

the framework of goals and questions for this study appearing In Figure 2.

The first goal area is performance oriented and Includes a natural first question

(I.A): which of the techniques detects the most faults In the programs? The comparison

between the techniques Is being made across programs, each with a different number of

- faults. An alternate Interpretation would then be to compare the percentage of faults

. found In the programs (question I.A.1). The number of faults that a technique exposes

should also be compared; that Is, faults that are made observable but not necessarily ob-

served and reported by a tester (I.A..2). Because of the differences in types of software

and in testers' abilities, It Is relevant to determine whether the number of faults detect-

* ed Is either program or programmer dependent (I.B, I.C). Since one technique may find

* a few more faults than another, It becomes useful to know how much effort that tech-

- nique requires (I.A). Awareness of what types of software require more effort to test

(Il.B) and what types of programmer backgrounds require less effort In fault uncovering

* (II.C) Is also quite useful. If one Is Interested In detecting certain classes of faults, such

as In error-based testing (Foster 80, Valdes & Goel 831, It Is appropriate to apply a tech-

nlque sensitive to that particular type (III.A). Classifying the types of faults that are

observable yet go unreported could help focus and Increase testing effectiveness (II.B).

3. Empirical Study

Admittedly, the goals stated here are quite ambitious. In no way Is It Implied that

this study can definitively answer all of these questions for all environments. It Is In-

tended, however, that the statistically significant analysis presented lends Insights Into

their answers and Into the merit and appropriateness of each of the techniques. Note

* 2

- .. -. . . - •k . . .- , -. ,

* that this study compares the Individual application of the three testing techniques In

order to Identify their distinct advantages and disadvantages. This approach Is a first

step toward proposing a composite testing strategy, which possibly Incorporates several

testing methods. The following sections describe the empirical study undertaken to pur-

sue these goals and questions, Including the selection of subjects, programs, and experi-

mental design, and the overall operation of the study.

* 3.1. Iterative Experimentation

The empirical study consisted of' three phases. The first and second phases of the

* study took place at the University of Maryland In the Falls of 1982 and 1983 respective-

* ly. The third phase took place at Computer Sciences Corporation (CSC - Silver Spring,

MID) and NASA Goddard Space Flight Center (Greenbelt, MD) In the Fall of 1084. The

sequential experimentation supported the Iterative nature of the learning process, and

* enabled the Initial set of goals and questions to be expanded and resolved by further

* analysis. The goals were further refined by discussions of the preliminary results [Selby

83, Selby 84]. These three phases enabled the pursuit of result reproducibility across en-

vironments having subjects with a wide ran-;~ of experience.

- 3.2. Subject and Program/Fault Selection

A primary consideration In this study was to use a realistic testing environment to

- assess the effectiveness of these different testing strategies, as opposed to creating a best

* possible testing situation (Hetzel 78]. Thus, 1) the subjects for the study were chosen to

* be representative of different levels of expertise, 2) the programs tested correspond to

- different types of software and reflect common programming style, and 3) the faults In

* the programs were representative of those frequently occurring In software. Sampling

* the subjects, programs, and faults In this manner Is Intended to evaluate the testing

methods reasonably, and to facilitate the generalization of the results to other environ-

* meats.

* 3.2.1. Subjects

The three phases of the study Incorporated a total of 74 subjects: the Individual

* phases had 29, 13, and 32 subjects respectively. The subjects were selected, based on

3.

* several criteria, to be representative of three different levels of computer science exper-

* tUse: advanced, Intermediate, and junior. The number of subjects In each level of exper-

tise for the different phases appears In Figure 3.

The 42 subjects In the first two phases of the study were the members of the upper

level "Software Design and Development" course at the University of Maryland In the

Falls of 1982 and 1983. The Individuals were either upper-level computer science majors

* or graduate students; some were working part-time and all were In good academic

* standing. The topics of the course Included structured programming practices, function-
al correctness, top-down design, modular specification and design, step-wise refinement,

and PDL, In addition to the presentation of the techniques of code reading, functional

testing, and structural testing. The references for the testing methods were (Mills 75,

* Fagan 78, Myers 79, Howden 801, and the lectures were presented by V. R. Basili and F.

T. Baker. The subjects from the University of Maryland spanned the Intermediate and

Junior levels of computer science expertise. The assignment of Individuals to levels of

* expertise was based on professional experience and prior academic performance In

* relevant computer science courses. The Individuals In the first and second phases had

overall averages of 1.7 (SD = 1.7) and 1.5 (SD = 1.5) years of professional experience.

The nine Intermediate subjects In the first phase had from 2.8 to 7 years of professional

experience (average of 3.9 years, SD = 1.3), and the four In the second phase had from

2.3 to 5.5 years of professional experience (average of 3.2, SD = 1.5). The twenty

Junior subjects In tihe first phases and the nine In the second phase both had from 0 to 2

years professional experience (averages of 0.7, SD =0.8, and 0.8, SD =0.8, respective-

* ly).

The 32 subjects In the third phase of the study were programming professionals

* rfrom NASA and Computer Sciences Corporation. These Individuals were inathernati-

clans, physicists, and engineers that develop ground support software for satellites.

They were familiar with all three testing techniques, but had used functional testing pri-

* mantly. A four hour tutorial on the testing techniques was conducted for the subjects

* by R. W. Selby. This group of subjects, examined In the third phase of the experiment,

* spanned all three expertise levels and had an overall average of 10.0 (SD = 5.7) years

professional experience. Several criteria were considered In the assignment of subjects to

4

expertise levels, Including years of professional experience, degree background, and their

manager's suggested assignment. The eight advanced subjects ranged from 9.5 to 20.5

years professional experience (average of 15.0, SD = 4.1). The eleven Intermediate sub-

jects ranged from 3.5 to 17.5 years experience (average of 10.9, SD = 4.9). The thirteen

junior subjects ranged from 1.5 to 13.5 years experience (average of 8.1, SD = 4.4).

3.2.2. Programs

The experimental design enables the distinction of the testing techniques while al-

lowing for the effects of the different programs being tested. The four programs ued In

the Investigation were chosen to be representative of several different types of software.

* The programs were selected specially for the study and were provided to the subjects for

testing; the subjects did not test programs that they had written. All programs were

*written In a high-level language with which the subjects were familiar. The three pro-

grams tested In the CSC/NASA phase were written In FORTRAN, and the programs

tested In the University of Maryland phases were written In the Slmpl-T structured pro-

gramming language fBasill & Turner 781. 1 The four programs tested were PI) a text

. processor, P 2) a mathematical plotting routine, PF) a numeric abstract data type, and

.: P4) a database maintainer. The programs are summarized in Figure 4. There exists

. some differentiation In size, and the programs are a realistic size for unit testing. Each

• .of the subjects tested three programs, but a total of four programs was used across the

three phases of the study. The programs tested In each of the three phases of the study

* appear In Figure 5. The specifications for the programs appear In Appendix A, and

their source code appears In Appendix B.

The first program is a text formatting program, which also appeared In [Myers 78].

A version of this program, originally written by [Naur 69] using techniques of program

*.correctness proofs, was analyzed In [Goodenough & Gerhart 75]. The second program Is

a mathematical plotting routine. This program was written by R. W. Selby, based

roughly on a sample program in [Jensen & Wirth 74]. The third program Is a numeric

SImpl-T Is a structured language that supports several string and file handling
primitives, In addition to the usual control flow constructs available, for example, in
Pascal.

5
,.

S. .. *.. . *"".**%*.*

-. 7

data abstraction consisting of a set of list processing utilities. This program was sub-

mitted for a class project by a member of an Intermediate level programming course at

the University of Maryland. [McMullin & Gannon 80]. The fourth program Is a main-

tainer for a database of bibliographic references. This program was analyzed In [Hetzel

78], and was written by a systems programmer at the University of North Carolina com-

putatlon center.

Note that the source code for the programs contalns no comments. This creates a

worst-case situation for the code readers. In an environment where code contained help-

ful comments, performance of code readers would likely Improve, especially If the source

code contained as comments the Intermediate functions of the program segments. In an

environment where the comments were at all suspect, they could then be Ignored.

3.2.3. Faults

The faults conialned In the programs tested represent a reasonable distribution of

faults that commonly occur In software [Weiss & BasIlI 85, Baslll & Perricone 84]. All

the faults In the database maintalner and the numeric abstract data type were made

during the actual development of the programs. The other two programs contain a mix

* of faults made by the original programmer and faults seeded In the code. The programs

contained a total of 34 faults; the text formatter had nine, the plotting routine had six,

the abstract data type had seven, and the database malntalner had twelve.

.* 3.2.3.1. Fault Origin

The faults in the text formatter were preserved from the article In which It ap-

peared (Myers 78], except for some of the more controversial ones [Callllau & Rubin 79].

In the mathematical plotter, faults made during program translation were supplemented

by additional representative faults. The faults In the abstract data type were the orlgi-

nal ones made by the program's author during the development of the program. The

faults In the database maIntalner were recorded during the development of the program,

-. and then reinserted Into the program. The next section describes a classification of the

different types of faults In the programs. Note that this Investigatlon of the fault

detecting ability of these techniques Involves only those types occurring In the source

code. not other types such as those In the requirements or the specifications.

o.6

.................. o-x.......... .'

..*° .*.-.. . y .".**. ~ .K *

• - .. _..,.,.. . .-... ., C . .. - -. " - -. r _r r--° r,- ,r.. . -.. . , . .° °

*3.2.3.2. Fault Classification

The faults In the programs are classified according to two dIfferent abstract

classification schemes [Basill & Perricone 841. One fault categorization method separates

faults of omission from faults of commission. Faults of commission are those faults

present as a result of an Incorrect segment of existing code. For example, the wrong ar-

IthmetIc operator Is used for a computation In the right-hand-slde of an assignment

statement. Faults of omission are those faults present as a result of a programmer's for-

getting to include some entity In a module. For example, a statement is missing from

the code that would assign the proper value to a variable.

A second fault categorization scheme partitions software faults Into the six classes

of 1) Initialization, 2) computation, 3) control, 4) interface, 5) data, and 6) cosmetic.

Improperly Initializing a data structure constitutes an Initialization fault. For example,

assigning a variable the wrong value on entry to a module. Computation faults are

those that cause a calculation to evaluate the value for a variable incorrectly. The

above example of a wrong arithmetic operator in the right-hand-side of an assignment

. statement would be a computation fault. A control fault causes the wrong control flow

* path In a program to be taken for some Input. An incorrect predicate In an IF-THEN-

ELSE statement would be a control fault. Interface faults result when a module uses

and makes assumptions about entities outside the module's local environment. Interface

faults would be, for example, passing an Incorrect argument to a procedure, or assuming

In a module that an array passed as an argument was filled with blanks by the passing

routine. A data fault are those that result from the Incorrect use of a data structure.

For example, Incorrectly determining the Index for the last element In an array. Finally,

- cosmetic faults are clerical mistakes when entering the program. A spelling mistake In

,. an error message would be a cosmetic fault.

Interpreting and classifyIng faults in software Is a difficult and Inexact task. The

categorization process often requires trylng to recreate the original programmer's

misunderstanding of the problem [Johnson, Draper & Soloway 83]. The above two fault

classification schemes attempt to distinguish among different reasons that programmers

make faults In software development. They were applied to the faults In the programs

7

* In a consistent Interpretation; It is certainly possible that another analyst could have In-
terpreted them differently. The separate application of each or the two classification

schemes to the faults categorized them In a mutually exclusive and exhaustive manner.

Figure 8 displays the distribution of faults In the programs according to these schemes.

3.2.3.3. Fault Description

The faults In the programs are described In Figure 7. There have been various

* efforts to determine a precise counting scheme for "defects" In software (Gloss-Soler 79,

TEE 83]. According to the explanations given, a software "fault" Is a specific manifes-

tation In the source code of a programmer "error." For example, due to a misconception

- or document discrepancy, a programmer commits an "error" (in his/her head) that may

result In more than one "fault" In a program. Using this Interpretation, software

- "faults* reflect the correctness, or lack thereof, In a program. The entities examined In

- this analysis are software faults.

* 3.3. Experiimental Design

The experimental design applied for each of the three phases of the study was a

* fractional factorial design [Cochran & Cox 50, Box, Hunter, & Hunter 781. This experi-

mental design distinguishes among the testing techniques, while allowing for variation In

* the ability of the particular Individual testing or In the program being tested. Figure 8

displays the fractional factorial design appropriate for the third phase of the study.

* Subject S1 Is In the advanced expertise level, and he structurally tested program P1,

* functionally tested program P5. and code read program P4. Notice that all of the sub-

Jects tested each of the three programs and used each of the three techniques. Of

* course, no one tests a given program more than once. The design appropriate for the

* third phase Is discussed In the following paragraphs, with the minor differences between

this design and the ones applied In the first two phases being discussed at the end of the

section.

3.3.1. Independent and Dependent Variables

The experimental design has the three Independent variables of testing technique,

software type, and level of expertise. For the design appearing In Figure 8, approprIat

8

- T

for the third phase of the study, the three main effects have the following levels:

1) testing technique: code reading, functional testing, and structural testing

2) software type: (PI) text processing, (Ps) numeric abstract data type, and (P4) data-

base maintainer

3) level of expertise: advanced, Intermediate, and junior

* Every combination of these levels occurs In the design. That Is, programmers In all

three levels of expertise applied all three testing techniques on all programs. In addition

to these three main effects, a factorial analysis of variance (ANOVA) model supports the

analysis of Interactions among each of these main effects. Thus, the Interaction effects

* of testing technique * software type, testing technique * expertise level, software type*

* expertise level, and the three-way Interaction of testing technique * software type * ex-

pertise level are Included In the model. There are several dependent variables examined

* In the study, Including number of faults detected, percentage of faults detected, total

* fault detection time, and rault detection rate. Observations from the on-line methods of

functional and structural testing also had as dependent variables number of computer

runs, amount of cpu-time consumed, maximum statement coverage achieved, connect

* time used, number of faults that were observable from the test data, percentage of

* faults that were observable from the test data, and percentage of faults observable In

* the from the test data that were actually observed by the tester.

* 3.3.2. Analysis of Variance Model

The three main effects and all the two-way and three-way Interactions effects are

called fixed effects In this factorial analysis of variance model. The levels of these effects

* given above represent all levels of interest In the Investigation. For example, the effect

of testlng technique has as particular levels code reading, functional testing, and struc-

* tural testing; these particular testing techniques are the only ones under comparison In

this study. The effect of the particular subjects that participated In this study requires

a little different Interpretation. The subjects examined In the study were random sam-

* pies of programmers from the large population of programmers at each of the levels of

expertise. Thus, the effect of the subjects on the various dependent variables Is a ran-

* dom variable, and this effect therefore is called a random effect. If the samples exam-

O8

L. o. . - . . .

.ned are truly representative of the population of subjects at each expertise level, the

Inferences from the analysis can then be generalized across the whole population of sub-

jects at each expertise level, not just across the particular subjects In the sample chosen.

Since this analysis of variance model contains both fixed and random effects, It Is called

a mixed model. The actual ANOVA model for the design appearing In Figure 8 is given

below.

Tijkl = P + Cfi + j V-k + 6ki + Oij + Ot"/ik + 3Yjk + CtBfijk + eijki

where

T jk Is the observed response from subject I of experience level k using testing

technique I on program j

p Is the overall mean response

ci Is the main effect of testing technique I (I = 1,2,3)

is the main effect of program j (j - 1, 3, 4)

SYk Is the main effect of expertise level k (k = 1, 2, 3)
6k, Is the random effect of subject I within expertise level k, a random variable (I

- 1, 2, ..., 32; k = 1, 2, 3)

Otij is the interaction effect of testing technique I with program j (I = 1, 2, 3; j

- 1, 3, 4)

a-/ik Is the Interaction effect of testing technique I with expertise level k (I = 1,

2, 3; k 1, 2, 3)

Iy'Tjk Is the Interaction effect of program J with expertise level k (j = 1, 3, 4; k -

1, 2, 3)

co Yijk Is the interaction effect of testing technique I with program j with experI-

ence level k (I = 1, 2, 3; j = 1, 3, 4; k -= 1, 2, 3)

e ijk Is the experimental error for each observatlon, a random variable

10

The F tests of hypotheses on all the fixed effects mentioned above use the error

(residual) mean square In the denominator, except for the test of the expertise level

* effect. The expected mean square for the expertise level effect contains a component for

* the actual variance of subjects within expertise level. In order to select the appropriate

error term for the denominator of the expertise level F test, the mean square for the

* effect of subjects nested within expertise level is chosen. The parameters for the random

* effect of subjects within expertise level are assumed to be drawn from a normally distri-

* buted random process with mean zero and common variance. The experimental error

terms are assumed to have mean zero and common variance.

The fractional factorial design applied In the first two phases of the analysis

* differed slightly from the one presented above for the third phase.2 In the third phase of

the study, programs P 1 , Pp and P 4 were tested by subjects In three levels of expertise.

* In both phases one and two, there were only subjects from the levels of Intermediate

and junior expertise. In phase one, programs P 1 , Pp, and Pe were tested. In phase

two, the programs tested were P 1, P V and P 4. The only modifications necessary to the

above explanation for phases one and two are 1) eliminating the advanced expertise lev-

el, 2) changing the program P subscripts appropriately, and 3) leaving out the three way

* Interaction term In phase two, because of the reduced number of subjects. In all three

* of the phases, all subjects used each of the three techniques and tested each of the three

* programs for that phase. Also, within all three phases, all possible combinations of ex-

* pertise level, testing techniques, and programs occurred.

The order of presentation of the testing techniques was randomized among the sub-

* jects In each level of expertise In each phase of the study. However, the Integrity of the

* results would have suffered If each of the programs In a given phase was tested at

* different times by different subjects. Note that each of the testing sessions took place

on a different day because of the amount of effort required. If different programs would

have been tested on different days, any discussion about the programs among subjects

2Although the data from all the phases can be analyzed together, the number of
empty cells resulting from not having all three experience levels and all four programs In
all phases limits the number of parameters that can be estimated and causes non-unique
Type IV partial sums of squares.

between testing sesons would have affected the future performance or others. There-

fore, all subjects In a phase tested the same program on the same day. The actual order

of program presentation was the order in which the programs are listed In the previous

paragraph.

3.4. Experimental Operation

Each of the three phases were broken Into five distinct pieces: training, three test-

Ing sessions, and a follow-up session. All groups of subjects were exposed to a similar

amount of training on the testing techniques before the study began. As mentioned ear-

Her, the University of Maryland subjects were enrolled In tjhe "Software Design and De-

velopment" course, and the NASA/CSC subjects were given a four-hour tutorial. Back-

ground Information on the subjects was captured through a questionnaire. Elementary

* exercises followed by a pretest covering all techniques were administered to all subjects

after the training anld before the testing sessions. Reasonable effort on the part of the

University of Maryland subjects was enforced by their being graded on the work and by

*theIr needing to use the techniques In a major class project. Reasonable effort on the

part of the NASA/CSC subjects was certain because of their desire for the study's out-

* come to Improve their software testing environment. All subjects groups were judged

* highly motivated during the study. The subjects were all familiar with the editors, ter-

* minals, machines, and the programs' Implementation language.

The Individuals were requested to use the three testing techniques to the best of

their ability. Every subject participated In all three testing sessions of his/her phase,

- using all techniques but each on a separate program. The Individuals using code read-

Ing were each given the specification for the program and Its source code. They were

* then asked to apply the methods of code reading by stepwise abstraction to detect

* discrepancies between the program's abstracted function and the specifIcation. The

functional testers were each given a specification and the ability to execute the program.

They were asked to perform equivalence partitioning and boundary value analysis to

select a set of test data for the program. Then they executed the program on this col-

lection of test data, and Inconsistencies between what the program actually performed

and what they though the specification said It should perform were noted. The struc-

12

..

tural testers were given the source code for the program, the ability to execute It, and a

description of the Input format for the program. The structural testers were asked to

examine the source and generate a set of test cases that cumulatively execute 100% of

the program's statements. When the subjects were applying an on-line technique, they

generated and executed their own test data; no test data sets were provided. The pro-

gram were Invoked through a test driver that supported the use the of multiple Input

data sets. This test driver, unbeknown to the subjects, drained off the Input cases sub-

mitted to the program for the experimenter's later analysis; the programs could only be

accessed through a test driver.

A structural coverage tool calculated the actual statement coverage of the test set

and which statements were left unexecuted for the structural testers. After the struc-

tural testers generated a collection of test data that met (or almost met) the 100% cov-

erage criteria, no further execution of the program or reference to the source code was

* allowed. They retained the program's output from the test cases they had generated.

* These testers were then provided with the program's specification. Now that they knew

what the program was Intended to do, they were asked to contrast the program's

* specification with the behavior of the program on the test data they derived. This

* scenario for the structural testers was necessary so that "observed" faults could be com-

pared.

At the end of each of the testing sessions, the subjects were asked to give a reason-

- 'able estimate of the amount of time spent detecting faults with a given testing tech-

* nlciue. The University of Maryland subjects were assured that this had nothing to with

the grading of the work. There seemed to be little Incentive for the subjects In any of

* the groups not to be truthful. At the completion of each testing session, the

* NASA/CSC subjects were also asked what percentage of the faults In the program that

they thought were uncovered. After all three testing sessions In a given phase were

completed, the subjects were requested to critique and evaluate the three testing tech-

niques regarding their understandability, naturalness, and effectiveness. The University

* of Mlaryland subjects submitted a written critique, while a two hour debrIefing forum

was conducted for the NASA/CSC Individuals. In addition to obtaining the Impressions

* of the Individuals, these follow-up procedures gave an understanding of how well the

13

subjects were comprehending and applying the methods. These final sessions also

afforded the Participants an opportunity to comment on any particular problems they

* had with the techniques or In applying them to the given programs.

* 4. Data Analysis

The analysis of the data collected from the various phases of the experiment Is

* presented according to the goal and question framework discussed earlier.

* 4.1. Fault Detection Effectiveness

The first goal area addresses the fault detection effectiveness of each of the tech-

* niques. Figure g presents a summary of the measures that were examined to pursue this

goal area. A brief description of each measure Is as follows - (*) means only relevant for

- on-line testing. a) # Faults detected - the number of faults detected by a subject ap-

plying a given testing technique on a given program. b) % Faults detected - the per-

* centage of a program's faults that a subject detected by applying a testing technique to

the program. c) # Faults observable ()-the number of faults that were observable

* from the program's behavior given the Input data submitted. d) % Faults observable

* (*) -the percentage of a program's faults that were observable from the program's

* behavior given the Input data submitted. e) 7b Detected/observable ()-the percen-

* tage of faults observable from the program's behavior on the given Input set that were

actually observed by a subject. f) % Faults felt found - a subject's estimate of the per-

centage of a program's faults that he/she thought were detected by his/her testing. g)

* Maximum statement coverage ()-the maximum percentage of a program's statements

that were executed In a set of test cases.

* 4.1.1. Data Distributions

The actual distribution of the number of faults observed by the subjects appears In

Figure 10, broken down by phase. From FIgures 9 and 10, the large variation In perfor-

* mance among the subjects Is clearly seen. The mean number of faults detected by the

subjects is displayed In Figure 11, broken down by technique, program, expertise level,

and phase.

14

. ~~.. * *- ****.*

* 4.1.2. Number of Faults Detected

The first question under this goal area asks which of the testing techniques detected

the most faults in the programs. The overall F-test of the techniques detecting an equal

number of faults in the programs is rejected In the first and third phases of the study

(a<.024 and a<.0001, respectively; not rejected in phase two, a>.05). Recall that the

phase three data was collected from 32 NASA/CSC subjects, and the phase one data

was from 29 University of Maryland subjects. With the phase three data, the contrast

of "reading - 0.5 * (functional + structural)" estimates that the technique of code read-

Ing by stepwise abstraction detected 1.24 more faults per program than did either of the

other techniques (a< .0001, c.l. 0.73 - 1.75). 3 Note that code reading performed well

* even though the professional subjects' primary experience was with functional testing.

Also with the phase three data, the contrast of "functional - structural" estimates that

the technique of functional testing detected 1.11 more faults per program than did

S•-structural testing (a<.0007, c.l. 0.52 - 1.70). In the phase one data, the contrast of

S"0.5 * (reading + functional) - structural" estimates that the technique of structural

testing detected 1.00 fault less per program than did either reading or functional testing

* (a<.0065, c.l. 0.31 - 1.89). In the phase one data, the contrast of "reading - function-

al" was not statistically different from zero (a>.05). The poor performance of structur-

al testing across the phases suggests the inadequacy of using statement coverage criteria.

The above pairs of contrasts were chosen because they are linearly independent.

4.1.3. Percentage of Faults Detected

Since the programs tested each had a different number of faults, a question In the

earlier goal/question framework asks which technique detected the greatest percentage

* of faults In the programs. The order of performance of the techniques Is the same as

above when the percentage of the programs' faults detected are compared. The overall

F-tests for phases one and three were rejected as before (a<.037 and a< .0001 respec-

tively; not rejected In phase two, a> .05). Applying the same contrasts as above: a) in

phase three, reading det-"cted 16.0% more faults per program than did the other tech-

- The probably of Type I error Is reported, the probability of erroneously rejecting
the null hypothesis. The abbreviation "c.l." stands for 95% confidence Interval.

15

,~~~~~~~~~~~~~~~~~~~~~~..- ,,.'.2... ;. ... ~i a _-.....:...... :.,........- .:.......- ,. ..;': ,,

nIques (a<.0001, c.I. 9.9 - 22.1), and functional detected 11.2% more faults than did

structural (a<.003, c.i. 4.1 - 18.3); b) In phase one, structural detected 13.2% fewer of

a program's faults than did the other methods (a<.011, c.l. 3.5 - 22.9), and reading and

functional were not statistically different as before.

4.1.4. Dependence on Software Type

Another question In this goal area queries whether the number or percentage of

faults detected depends on the program being tested. The overall F-test that the

number of faults detected is not program dependent Is rejected only In the phase three

data (a<.0001). Applying Tukey's multiple comparison on the phase three data reveals

that the most faults were detected In the abstract data type, the second most In the

text formatter, and the least number of faults were found In the database maintainer

--'* (simultaneous a< .05). When the percentage of faults found In a program Is considered,

however, the overall F-tests for the three phases are all rejected (Cf<.027, a<.01, and

* < .0001 in respective order). Tukey's -multiple comparison yields the following order-

Ings on the programs (all simultaneous a<.05). In the phase one data, the ordering was

(data type = plotter) > text formatter; that is, a, higher percentage of faults were

detected In either the abstract data type or the plotter than were found In the text for-

matter; there was no difference between the abstract data type and the plotter In the

percentage found. In the phase two data, the ordering of percentage of faults detected

S.was plotter > (text formatter c-- database malntalner). In the phase three data, the

ordering of percentage of faults found In the programs was the same as the number of

faults found, abstract data type > text formatter > database maintainer. Summarz-

Ing the effect of the type of software on the percentage of faults observed: 1) the pro-

* grams with the highest percentage of their faults detected were the abstract data type

and the mathematical plotter, the percentage detected between these two was not sta-

tistically different; 2) the programs with the lowest percentage of their faults detected

were the text formatter and the database malntalner; the percentage detected between

- these two was not statistically different In the phase two data, but a higher percentage

or faults In the text formatter was detected In the phase three data.

S%16

'~~~~~~~~~~~~~~~~..........-,..........v....... ;...........-. :
-.'

4.1.5. Observable vs. Observed Faults

One evaluation criteria of the success of a software testing session Is the number of

faults detected. An evaluation criteria of the particular test data generated, however, Is

* the ability of the test data to reveal faults In the program. A test data set's ability to

uncover faults In a program can be measured by the number or percentage of a

* program's faults that are made observable from execution on that Input. Distinguishing

* the faults observable In a program from the faults actually observed by a tester

* highlights the differences In the activities of test data generation and program behavior

examination. As shown In Figure 8, the average number of the programs' faults observ-

able was 88.0%S when Individuals were either functional testing or structurally testing.

Of course, with a nonexecutlon- based technique such as code reading, 100% of the faults

are observable. Test data generated by subjects using the technique of functional test-

* Ing resulted In 1.4 more observable faults (a<.0002, c-i. 0.79 - 2.01) than did the use of

structural testing In phase one of the study; the percentage difference of functional over

structural was estimated at 20.0% (a~<.0002, c.l. 11.2 - 28.8). The techniques did not

differ In these two measures In the third phase of the study. However, just considering

* the faults that were observable from the submitted test data, functional testers detected

* 18.5% more of these observable faults than did structural testers In the phase three data

(a< .0016, c.I. 8.9 - 28.1); they did not differ In the phase one data. Note that all faults

In the programs could be observed In the programs' output given the proper Input data.

When using the on-line techniques of functional and structural testing, subjects detected

70.3% of the faults observable In the program's output. In order to conduct a successful

testing session, faults In a pro;ram must be both revealed and subsequently observed.

* 4.1.6. Dependence on Program Coverage

Another measure of the ability of a test set to reveal a program's faults Is the per-

centage of a program's statements that are executed by the test set. The average max-

imum statement coverage achieved by the functional and structural testers was 97.0%.

The maximum statement coverage from the submitted test data was not statistically

* different between the functional and structural testers (a>.05). Also, there was no

* correlation between maximum statement coverage achieved and either number or per-

17

centage of faults found (a>.05).

4.1.7. Dependence on Programmer Expertise

A final question In this goal area concerns the contribution of programmer expertise

to fault detection effectiveness. In the phase three data from the NASA/CSC profes-

slonal environment, subjects of advanced expertise detected more faults than did either

the subjects of Intermediate or Junior expertise (a< .05). When the percentage of faults

detected s compared, however, the advanced subjects performed better than the junior

subjects (a<.05), but were not statistically different from the intermediate subjects

(a>.05). The Intermediate and junior subjects were not statistically different In any of

the three phases of the study In terms of number or percentage faults observed. When

*i several subject background attributes were correlated with the number of faults found,

total years of professional experience had a minor relationship (Pearson R = .22,

a<.05). Correspondence of performance with background aspects was examined across

all observations, and within each of the phases, Including previous academic perfor-

mance for the University of Maryland subjects. Other than the above, no relationships

were found.

4.1.8. Accuracy of Self-Estimates

Recall that the NASA/CSC subjects In the phase three data estimated, at the com-

pletlon of a testing session, the percentage of a program's faults they thought they had

uncovered. This estimation of the number of faults uncovered correlated reasonably

well with the actual percentage of faults detected (R = .57, a<.0001). Investigating

further, Individuals using the different techniques were able to give better estimates:

code readers gave the best estimates (R = .79, a<.0001), structural testers gave the

second best estimates (R = .57, a< .0007), and functional testers gave the worst esti-

mates (no correlation, a>.05). This last observation suggests that the code readers

were more certain of the effectiveness they had In revealing faults In the programs.

4.1.9. Dependence on Interactions

There were few significant Interactions between the main effects of testing tech-

nique, program, and expertise level. In the phase two data, there was an Interaction

18

['-" ', .' ,'.-'o'-. *'o*°= '. o' °'o '. -.. '. '..'.-'° ,°'°o°'- *4 ° *..".,'° '...-...-."...-......................,............"...".......................... " ," ., = " ° • -

-
-

W .. 7. 7. 7 .

between testing technique and program In both the number and percentage of faults

found (a<.0013, a<.0014 respectively). The effectiveness of code reading Increased on

the text formatter. In the phase three data, there was a slight three-way Interaction

- between testing technique, program, and expertise level for both the number and per-

centage of faults found (a<.05, a<.04 respectively).

4.1.10. Summary of Fault Detection Effectiveness

Summarizing the major results of the comparison of fault detection effectiveness: 1)

In the phase three data, code reading detected a greater number and percentage of

faults than the other methods, with functional detecting more than structural; 2) In the

phase one data, code reading and functional were equally effective, while structural was

• Inferior to both - there were no differences among the three techniques In phase two; 3)

the number of faults observed depends on the type of software: the most faults were

detected In the abstract data type and the mathematical plotter, the second most in the

text formatter, and (in the case of the phase three data) the least were found In the da-

tabase maintainer; 4) functionally generated test data revealed more observable faults

than did structurally generated test data in phase one, but not In phase three; 5) sub-

jects of Intermediate and junior expertise were equally effective In detecting faults, while

. advanced subjects found a greater number of faults than did either group; and 8) self-

estimates of faults detected were most accurate from subjects applying code reading, fol-

lowed by those doing structural testing, with estimates from persons functionally testing

having no relationship.

4.2. Fault Detection Cost

The second goal area examines the fault detection cost of each of the techniques.

Figure 12 presents a summary of the measures that were examined to Investigate this

goal area. A brief description of each measure is as follows - (*) means only relevant for

on-line testing. a) # Faults / hour - the number of faults detected by a subject a.pply-

- Ing a given technique normalized by the effort In hours required, called the fault detec-

tlon rate. b) Detection time - the total number of hours that a subject spent In testing

a program using a technique. c) Cpu-tlme (,) - the cpu-time In seconds used during the

testing session. d) Normalized cpu-time (,) - the cpu-time In seconds used during the

j 19

"'ig

.'.. . " ".... ." ** * ~ . * *..' '. '. - .'.... .".. .•.....-..... .-. .. '.'.. '

testing session, normalized by a factor for machine speed.4 e) Connect time (*) - the

number of minutes that a Individual spent on-line while testing a program. f) # Pro-

gram runs (,) - the number of executions of the program test driver; note that the

driver supported multiple sets of Input data. All of the on-line statistics were monitored

by the operating systems of the machines.

4.2.1. Data Distributions

The actual distribution of the fault detection rates for the subjects appears In Fig-

ure 13, broken down by phase. Once again, note the many-to-one differential In subject

performance. Figure 14 displays the mean fault detection rate for the subjects, broken

down by technique, program, expertise level, and phase.

4.2.2. Fault Detection Rate and Total Time

The first question In this goal area asks which testing technique had the highest

fault detection rate. The overall F-test of the techniques' having the same fault detec-

tion rate was rejected In the phase three data (a<.0014), but not In the other two

phases (a>.05). As before, the two contrasts of "reading - 0.5 * (functional + structur-

al)'" and "functional - structural" were examined to detect differences among the tech-

. niques. The technique of code reading was estimated at detecting 1.49 more faults per

* hour than did the other techniques In the phase three data (a<.0003, c.l. 0.75 - 2.23).

The techniques of functional and structural testing were not statistically different

(a> .05). Comparing the total time spent In fault detection, the techniques were not

statistically different In the phase two and three data; the overall F-test for the phase

one data was rejected (a<.013). In the phase one data, structural testers spent an es-

timated 1.08 hours less testing than did the other techniques (a<.004, c.l. 0.39 - 1.78),

while code readers were not statistically different from functional testers. Recall that in

phase one, the structural testers observed both a lower number and percentage of the

programs' faults than did the other techniques.

4 In the phase three data, testing was done on both a VAX 11/780 and an IM
4341. As suggested by benchmark comparisons [Church 84], the V.X cpu-times were
divided by 1.6 and the IBM cpu-tImes were divided by 0.9.

20

S. [

4.2.3. Dependence on Software Type

Another question In this area focuses on how fault detection rate depends on soft-

ware type. The overall F-test that the detection rate Is the same for the programs Is re-

. jected In the phase one and phase three data (a<.01 and a<.0001 respectively); the

detection rate among the programs was not statistically different In phase two. Apply-

Ing Tukey's multiple comparisons on the phase one data finds that the fault detection

rate was greater on the abstract data type than on the plotter, while there was no

difference either between the abstract data type and the text formatter or between the

text formatter and the plotter (simultaneous a<.05). In the phase three data, the fault

detection rate was higher In the abstract data type than It was for the text formatter

and the database maintalner, with the text formatter and the database maintainer not

being statistically different (simultaneous a<.05). The overall effort spent In fault

.. detection was different among the programs In phases one and three (a<.012 and

a<.0001 respectively), while there was no difference In phase two. In phase one, more

effort was spent testing the plotter than the abstract data type, while there was no sta-

:. tIstIcal difference either between the plotter and the text formatter or between the text

*" formatter and the abstract data type (simultaneous a<.05). In phase three, more time

was spent testing the database maintainer than was spent on either the text formatter

or on the abstract data type, with the text formatter not differing from the abstract

data type (simultaneous a<.05). Summarizing the dependence of fault detection cost

on software type, 1) the abstract data type had a higher detection rate and less total

*detection effort than did either the plotter or the database maintainer, the latter two

were not different in either detection rate or total detection time; 2) the text formatter

and the plotter did not differ In fault detection rate or total detection effort; 3) the text

formatter and the database maintalner did not differ In fault detection rate overall and

did not differ In total detection effort In phase two, but the database malntalner had a

" higher total detection effort In phase three; 4) the text formatter and the abstract data

*,_. type did not differ in total detection effort overall and did not differ In fault detection

, rate iiu phase one, but the abstract data type had a higher detection rate In phase three.

21

'." .".4-,m a- a - I'd mlnlm~~mma "- " ' "..".
"

- ";

- 4.2.4. Computer Costs

In addition to the effort spent by Individuals In software testing, on-line methods

Incur machine costs. The machine cost measures of cpu-time, connect time, and the

number of runs were compared across the on-line techniques of functional and structural

testing In phase three of the study. A nonexecutlon-based technique such as code read-

Ing, of course, Incurs no machine time costs. When the machine speeds are normalized

(see measure definitions above), the technique of functional testing used 28.0 more

seconds of cpu-time than did the technique of structural testing (a< .018, c.l. 7.0 -

45.0). The estimate of the difference Is 29.8 seconds when the cpu-tlmes are not normal-

*. ized (a< .012, c.l. 9.0 - 50.2). Individuals using functional testing used 28.4 more

minutes of connect time than did those using structural testing (a< .004, c.l. 11.7 -

45.1). The number of computer runs of a program's test driver was not different

between the two techniques (a>.05). These results suggest that Individuals using func-

tional testing spent more time on-line and used more cpu-time per computer run than

did those structurally testing.

4.2.5. Dependence on Programmer Expertise

The relation of programmer expertise to cost of fault detection Is another question

In this goal section. The expertise level of the subjects had no relation to the fault

detection rate In phases two and three (a>.05 for both F-tests). Recall that phase

three of the study used 32 professional subjects with all three levels of computer science

expertise. In phase one, however, the Intermediate subjects detected faults at a faster

rate than did the junior subjects (a<.005). The total effort spent In fault detection was

not different among the expertise levels In any of the phases (a>.05 for all three F-

tests). When all 74 subjects are considered, years of professional experience correlates

. positively with fault detection rate (R = .41, a< .0002) and correlates slightly negative-

ly with total detection time (R := -. 25, a<.03). These last two observations suggest

that persons with more years of professional experience detected the faults faster and

spent less total time doing so. Several other subject background measures showed no

relationship with fault detection rate or total detection time (a<.05). Background

measures were examined across all subjects and within the groups of NASA/CSC sub-

'.

• .. ,~. -2.2*

Jects and University of Maryland subjects.

4.2.6. Dependence on Interactions

There were few significant Interactions between the main effects of testing tech-

nlque, program, and expertise level. There was an Interaction between testing technique

oo and software type In terms of fault detection rate and total detection cost for the phase

three data (ct<.003 and a< .007 respectively). Subjects using code reading on the

abstract data type had an increased fault detection rate and a decreased total detection

time.

'- 4.2.7. Relationships Between Fault Detection Effectiveness and Cost

There were several correlations between fault detection cost measures and perfor-

mance measures. Fault detection rate correlated overall with number of faults detected

(R = .48, ai< .0001), percentage of faults found (R - .48, a< .0001), and total detec-

tion time (P. = -.53, a<.0001), but not with normalized cpu-time, raw cpu-time, con-

nect time, or number of computer runs (a>.05). Total detection time correlated with

normalized cpu-time (R = .36, a<.04) and raw cpu-time (R = .37, a<.04), but not

with connect time, number of runs, number of faults detected, or percentage of faults

detected. The number of faults detected in the programs correlated with the amount of

machine resources used: normalized cpu-time (R = .47, a< .007), raw cpu-time (R =

.52, a<.002), and connect time (R = .49, a<.003), but not with the number of com-

puter runs (a>.05). The correlations for percentage of faults detected with machine

-. resources used were similar. Although most of these correlations are minor, they suggest

• -that 1) the higher the fault detection rate, the more faults found and the less time spent

*In fault detection; 2) fault detection rate had no relationship with use of machine

* resources: 3) spending more time In detecting faults had no relationship with the

" amount of faults detected; and 4) the more cpu-time and connect time used, the more

faults found.

4.2.8. Summary of Fault Detection Cost

Summarizing the major results of the comparison of fault detection cost: 1) In the

phase three data, code reading had a higher fault detection rate than the other methods.

23

'X -: -."~~~ ~ ~ ~ -. . ._. ,, ." ." " - " • - -- " " - . . " " "" .
JM

with no difference between functional testing and structural testing; 2) In the phase one

and two data, the three techniques were not different In fault detection rate; 3) In the

phase two and three data, total detection effort was not different among the techniques,

but In phase one less effort was spent for structural testing than for the other tech-

niques, while reading and functional were not dIfferent; 4) fault detection rate and total

effort In detection depended on the type of software: the abstract data type had the

highest detection rate and lowest total detection effort, the plotter and the database

maintalner had the lowest detection rate and the highest total detection effort, and the

text formatter was somewhere In between depending on the phase; 5) functional testing

used more cpu-tlme and connect time than did structural testing, but they were not

different In the number of runs; 8) In phases two and three, subjects across expertise lev-

els were not different In fault detection rate or total detection time, In phase one Inter-

mediate subjects had a higher detection rate; and 7) there was a moderate correlation

between fault detection rate and years of professional experience across all subjects.

4.3. Characterization of Faults Detected

The third goal area focuses on determining what classes of faults are detected by

the different techniques. In the earlier section on the faults In the software, the faults

were characterized by two different classification schemes: omission or commission, and

*i Initialization, control, data, computation, Interface, or cosmetic. The faults detected

across all three study phases are broken down by the two fault classification schemes In

Figure 15. The entries In the figure are the average percentage (with standard devia-

: tons) of faults In a given class observed when a particular technique was being used.

Note that when a subject tested a program that had no faults In a given class, he/she

was excluded from the calculation of this average.

4.3.1. Omission vs. Commission Classification

When the faults are partitioned according to the omlsslon/commIssion scheme,

there Is a distinction among the techniques. Both code readers and functional testers

observed more omission faults than dId structural testers (a<.001), with code readers

and functional testers not being different (a>.05). Since a fault of omission occurs as a

result of some segment of code being left out, you would not expect structurally generat-

24

...

ed test data to find such faults. In fact, 44% of the subjects applying structural testing

found zero faults of omission when testing a program. A distribution of the faults ob-

served according to this classification scheme appears In Figure 16.

*4.3.2. Six-Part Fault Classification

When the faults are divided according to the second fault classification scheme,

- several differences are apparent. Both code reading and functional testing found more

Initialization faults than did structural testing (a< .05), with code reading and function-

al testing not being different (a> .05). Code reading detected more Interface faults than

* did either of the other methods (a< .01), with no difference between functional and

*structural testing (a>.05). This suggests that the code reading process of abstracting

and composing program functions across modules must be an effective technique for

-* finding interface faults. Functional testing detected more control faults than did either

of the other methods (a<.01), with code reading and structural testing not being

., dIfferent (a>.05). Recall that the structural test data generation criteria examined Is

based on determining the execution paths In a program and deriving test data that exe-

cute 100% of the program's statements. One would expect that more control path

* faults would be found by such a technique. However, structural testing did not do as

- well as functional testing In this fault class. The technique of code reading found more

computation faults than did structural testing (a< .05), with functional testing not be-

Ing different from either of the other two methods (a>.05). The three techniques were

not statistically different In the percentage of faults they detected In either the data or

cosmetic fault classes (a>.05 for both). A distribution of the faults observed according

. to this classification scheme appears In Figure 17.

'. 4.3.3. Observable Fault Classification

Figure 18 displays the average percentage (with standard deviations) of faults from

each class that were observable from the test data submitted, yet were not reported by

the tester.5 The two on-line techniques of functional and structural testing were not

s The standard deviations presented in the figure are high because of the several In-
stances In which all observable faults were reported.

25

* " different in any of the faults classes (x>.05). Note that there was only one fault in the

cosmetic class.

4.3.4. Summary of Characterization of Faults Detected

- Summarizing the major results of the comparison of classes of faults detected: 1)

code reading and functional testing both detected more omission faults and initialization

faults than did structural testing; 2) code reading detected more interface faults than

did the other methods; 3) functional testing detected more control faults than did the

other methods; 4) code reading detected more computation faults than did structural

testing; and 5) the on-line techniques of functional and structural testing were not

different In any classes of faults observable but not reported.

* .5. Conclusions

J .This study compares the strategies of code reading by stepwlse abstraction, func-

.. tional testing using equivalence class partitioning and boundary value analysis, and

structural testing using 100% statement coverage. The study evaluates the techniques

across three data sets In three different aspects of software testing: fault detection

.- effectiveness, fault detection cost, and classes of faults detected. Each of the three test-

* Ing techniques showed merit In this evaluation. The Investigation Is intended to com-

l pare the different testing strategies in representative testing situations, using program-

mers with a wide range of experience, different software types, and common software

faults.

The major results of this study are 1) with the professional programmers, code

reading detected more software faults and had a higher fault detection rate than did

functional or structural testing, while functional testing detected more faults than did

structural testing, but functional and structural testing were not different In fault detec-

tion rate; 2) In one UoM subject group, code reading and functional testing were not

different in faults found, but were both superior to structural testing, while in the other

UoM subject group there was no difference among the techniques; 3) with the UoM sub-

jects, the three techniques were not different In fault detection rate; 4) number of faults

observed, fault detection rate, and total effort in detection depended on the type of soft-

ware tested; 5) code reading detected more interface faults than did the other methods;

26

,.',"<x'2- -"..-.-. ...' ...-- ,-, "', .. '.-'.''.--.."..........

*L 8) functional testing detected more control faults than did the other methods; and 7)

when asked to estimate the percentage of faults detected, code readers gave the most

accurate estimates while functional testers gave the least accurate estimates.

The results suggest that code reading by stepwise abstraction (a nonexecution-

based method) Is at least as effective as on-line functional and structural testing in

*terms of number and cost of faults observed. They also suggest the inadequacy of using

100% statement coverage criteria for structural testing. Note that the professional pro-

grammers examined preferred the use of functional testing because they felt It was the

most effective technique; their intuition, however, turned out to be incorrect.

In comparing the results to related studies, there are mixed conclusions. A proto-

type analysis done at the University of Maryland In the Fall of 1981 [Hwang 81] sup-

ported the belief that code reading by stepwise abstraction does as well as the

computer-based methods, with each strategy having Its own advantages. In the Myers

experiment [Myers 78], the three techniques compared (functional testing, 3-person code

*reviews, control group) were equally effective. He also calculated that code reviews were

less cost-effective than the computer-based testing approaches. The first observation is

- supported in one study phase here, but the other observation Is not. A study conducted

-* by Hetzel [Hetzel 78] compared functional testing, code reading, and "selective" testing

(a composite of functional, structural, and reading techniques). He observed that func-

tional and "selective" testing were equally effective, with code reading being Inferior.

. As noted earlier, this Is not supported by this analysis. The study described in this

' analyss examined the technique of code reading by stepwise abstraction, while both the

Myers and Hetzel studies examined alternate approaches to off-line (nonexecution-based)

review/reading.

A few remarks are appropriate about the comparison of the cost-effectiveness and

- phase-availabllity of these testing techniques. When examining the effort associated

with a technique, both fault detection and fault Isolation costs should be compared.

The code readers have both detected and Isolated a fault; they located It In the source

code. Thus, the reading process condenses fault detection and Isolation into one actlvl-

-. ty. Functional and structural testers have only detected a fault; they need to delve Into

the source code and expend additional effort In order to Isolate the defect. Also, a

27

...-............-..--...-........- .. -

* ..-.

nonexecutlon-based reading process can be applied to any document produced during

the development process (e.g., high-level design document, low-level design document,

source code document). While functional and structural execution-based techniques

may only be applied to documents that are executable (e.g., source code), which are usu-

ally available]-ter in the development process.

Investigations related to this work Include studies of fault classification [Weiss &

BasIli 85, Johnson, Draper & Soloway 83, Ostrand & Weyuker 83, BasilI & Perricone 84]

and Cleanroom software development [Selby, Basill & Baker 85J. In the Cleanroom soft-

ware development approach, techniques such as code reading are used In the develop-

*. ment of software completely off-line (i.e., without program execution). In the above

study, systems developed using Cleanroom met system requirements more completely

*- and had a higher percentage of successful operational test cases than did systems

* developed with a more traditional approach.

The empirical study presented is intended to advance the understanding of how

various software testing strategies contribute to the software development process and

to one another. The results given were calculated from a set of Individuals applying the

three techniques to unlt-sized programs - the direct extrapolation of the findings to oth-

*er testing environments Is not Implied. However, valuable Insights Into software testing

have been gained. Further work applying these and other results to devise effective

testing environments Is underway.

.- 6. Acknowledgement

The authors are grateful to the subjects from Computer Sciences Corporation,

NASA Goddard. and the University of Maryland for their enthusiastic particlpatlon In

the study.

28

- *"' , " .. --.' ".. a ., . *, - * :. * -*-,-: **
,-,

- -unn m. i j* . . u* C *.

7. Appendices

7.1. Appendix A. The Specifications for the Programns
Pro gram 1

Given an input text of up to 80 characters consisting of words separated by blanks
or new-lne characters, the program formats It Into a line-by-lne form such that 1) each
output line has a maximum of 30 characters, 2) a word In the Input text Is placed on a
single output line, and 3) each output line Is flled with as many words as possible.

The Input text Is a stream of characters, where the characters are categorized as el-
* ther break or nonbreak characters. A break character Is a blank, a new-line character

(&), or an end-of-text character (/). New-lne characters have no special significance;
they are treated as blanks by the program. The characters & and / should not appear
In the output.

A word Is defined as a nonempty sequence of nonbreak characters. A break Is a se-
* quence of one or more break characters and Is reduced to a single blank character or

start of a new line In the output.

When the program Is Invoked, the user types the Input line, followed by a / (end-
* or-text) and a carriage return. The program then echos the text Input and formats It on

the terminal.

If the Input text contains a word that Is too long to fit on a single output line, an
error message Is typed and the program terminates. If the end-of-text character Is miss-
Ing, an error message Is Issued and the program awaits the Input of properly terminated
line of text.

Program 2
Given ordered pairs (x,y) of either positive or negative Integers as Input, the pro-

gram plots them on a grid with a horizontal x-axis and a vertical y-axis which are ap-
propriately labeled. A plotted point on the grid should appear as an asterisk ()

The vertical and horizontal scaling Is -handled as follows. If the maximum absolute
value of any y-value Is less than or equal to twenty (20), the scale for vertical spacing
will be one line per Integral unit (e.g., the point (3,0) should be plotted on the sixth line;
two lines above the point (3,4)). Note that the origin (point (0,0)) would correspond to
an asterisk at the the intersection or the axes (the x-axis Is referred to as the 0th line).
If the maximum absolute value of any x-value Is less than or equal to thirty (30), the
scale ror horizontal spacing will be one space per Integral unit (e.g., the point (4,5)

* should be plotted rour spaces to the right of the y-axis; two spaces to the right of (2,5)).
* However, If the maximum absolute value of any y-value Is greater than twenty (20), the

scale for vertical spacing will be one line per every (max abs o1f yval)/20 rounded-up.
(e.g.. If the maximum absolute value of any y-value to be plotted Is 88, the vertical line
spacing will be a line ror every four (4) integral units. In such a data set, points with
y-values greater than or equal to eight and less than twelve will show up as asterisks In

* the second line, points with y-values greater than or equal to twelve and less than six-

2g

.-

teen will show up as asterisks In the third line, etc. Continuing the example, the point
(3,15) should be plotted on the third line; two lines above the point (3,5).) Horizontal
scaling is handled analogously.

If two or more of the points to be plotted would show up as the same asterisk in
the grid (like the points (0,13) and (0,15) In the above example), a number '2' (or what-
ever number is appropriate) should be printed instead of the asterisk. Points whose as-
terlsks will lie on a axis or grid marker should show up in place of the marker.

Program 3

A list Is defined to be an ordered collection of integer elements which may have ele-
ments annexed and deleted at either end, but not in the middle. The operations that
need to be available are ADDFIRST, ADDLAST, DELETEFIRST, DELETELAST,
FIRST, ISEMPTY, LISTLENGTH, REVERSE, and NEWLIST. Each operation Is
described In detail below. The lists are to contain up to a maximum of five (5) ele-
ments. If an element Is added to the front of a "full" list (one containing five elements
already), the element at the back of the list Is to be discarded. Elements to be added to
the back of a full list are discarded. Requests to delete elements from empty lists result
in an empty list, and requests for the first element of an empty list results In zero (0) be-
Ing returned. The detailed operation descriptions are as below:

* ADDFIRST(LIST L, INTEGER I)
Returns the list L with I as its first element followed by all the elements of L. If L
Is "full" to begin with, L's last element is lost.

ADDLAST(LIST L, INTEGER I)
Returns the list with all of the elements of L followed by I. If L Is full to begin
with, L Is returned (i.e., I Is Ignored).

DELETEFIRST(LIST L)
Returns the list containing all but the first element of L. If L Is empty, then an
empty list Is returned.

DELETELAST(LIST L)
Returns the lst containing all but the last element of L. If L Is empty, then an
empty list Is returned.

FIRST(LIST L)
Returns the first element In L. If L Is empty, then it returns zero (0).

. ISE.NPTY(LIST L)
Returns one (1) If L Is empty, zero (0) otherwise.

* LISTLENGTH(LIST L)
Returns the number of elements In L. An empty list has zero (0) elements.

• NEVWLIST(LIST L)
Returns an empty list.

REVERSE(LIST L)
Returns a list containing the elements of L In reverse order.

30

..--"'d a'l m' omd'mam mh dn l"- -'" ' " " " - " *%

Program 4
(Note that a 'file' is the same thing as an IBM 'dataset'.)
The program maintains a database of bibliographic references. It first reads a mas-

ter file of current references, then reads a file of reference updates, merges the two, and
produces an updated master file and a cross reference table of keywords.

The first input file, the master, contains records of 74 characters with the following
format:

* column comment

* 1 - 3 each reference has a unique reference key
4 - 14 author of publication

* 15 - 72 title of publication
73 - 74 year issued
The key should be a three (3) character unique identifier consisting of letters between
A-Z. The next Input file, the update file, contains records of 75 characters in length.
The only difference from a master file record is that an update record has either an 'A'
(capital A meaning add) or a 'R' (capital R meaning replace) in column 75. Both the
master and update files are expected to be already sorted alphabetically by reference key
when read into the program. Update records with action replace are substituted for the
matching key record In the master file. Records with action add are added to the mas-
ter file at the appropriate location so that the file remains sorted on the key field. For
example, a valid update record to be read would be (including a numbered line just for
reference)

12345678012345878012345878012345878901234567890 1234 587890123456788012 34 5

BITbaker an Introduction to program testing 83&
The program should produce two pieces of output. It should first print the sorted

list of records In the updated master file in the same format as the original master file.
It should then print a keyword cross reference list. All words greater than three charac-
ters in a publication's title are keywords. These keywords are listed alphabetically fol-
lowed by the key fields from the applicable updated master file entries. For example, if
the updated master file contained two records,

ASCkermit introduction to software testing 82
(J nes the realities of software management 81

then the keywords are Introduction, testing, realities, software, and management. The
cross reference list should look like

Introduction
ABC

management
* DDX

realltles

31

-,z. ._.,,. : ,.:. ,,__.,_,., .;,-'..-,.............,.........,....-................-.....""..'"."............'"'"..".."...'..""..".....""..........,.........,... ',.:,,,

L' ,Z -. -' . .- ' "v-- -w - " ' . - . :.
.

. . . . - . - -. r , ., .o . -., . -_ . r - .. r.

DDX
software

ABC
DDX

tebLlng
ABC

Some possible error conditions that could arise and the subsequent actions Include
the following. The master and update files should be checked for sequence, and If a
record out of sequence is found, a message similar to 'key ABC out of sequence' should
appear and the record should be discarded. If an update record Indicates replace and
the matching key can not be found, a message similar to 'update key ABC not found'
should appear and the update record should be Ignored. If an update record Indicates
add and a matching key Is found, something like 'key ABC already In file' should ap-
pear and the record should be Ignored. (End of specification.)

7.2. Appendix B. The Source Code for the Programs

Program 1

001: C NOTE THAT YOU DO NOT NEED TO VERIFY THE FUNCTION 'NIATCH'.
002: C IT IS DESCRIBED THE FIRST TIME IT IS USED, AND ITS SOURCE CODE
003: C IS INCLUDED AT THE END FOR COMPLETENESS.
004: C
005: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS INCLUDE

A LEADING
. 006: C AND REQUIRED ' 'FOR CARRIAGE CONTROL
,* 007:

008: C VARIABLE USED IN FIRST, BUT NEEDS TO BE INITIALIZED
009: INTEGER MOREIN
010:
011: C STORAGE USED BY GCHAR
012: INTEGER BCOUNT
013: CHARA.CTER*I GBUFER(80)
014: CHARACTER*80 GBUF
015: C GBUFER AND GBUFSTR ARE EQUVALENCED

-" 016:
-- 017: C STORAGE USED BY PCHAR

018: INTEGER I
019: CHARACTER*l OUTLIN(31)
020: C OUTLIN AND OUTLINST ARE EQUIVALENCED

" 021:
, 022: CHARACTER*1 GCHAR

* 023:
024: C CONSTANT USED THROUGHOUT THE PROGRAM
025: CHARACTER*1 EOTEXT, BLANK, LINEFD

* 028: INTEGER MAYPOS
* 027:

- 028: COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN,
. 029: X EOTEXT, BLANK, LI1NEFD, GBUFER, GBUF

030:
031: DATA EOTEXT, BLANK, LINEFD, ALAXPOS / '/', '','&', 31 /

32

032:
033:

034: CALL FIRST
035: END
038:
037:
038: SUBROUTINE FIRST
039: INTEGER K, FILL, BUFPOS
040: CHARACTER* 1 CW
041: CHARACTER*1 BUFFER(31)

* 042:
- 043: INTEGER MOREIN, BCOUNT, I, MAXPOS
* 044: CHARACTER*l OUTLIN(31), GCHAR. EOTEXT, BLANK, LINEFD,

- 045: X GBUFER(80)
048: CHARACTER*80 GBUF
047:
048: COMMON /ALL/ MORE, BCOUNT, I, MAXPOS, OUTLIN,
049: X EOTEXT. BLANK. LINEFD, GBUFER, GBUF
050:
051: BUFPOS -a 0
052: FILL = 0
053: CW

*054:
055: MOREIN = 1
056:

" 057: 1 - 1
058: K - i
059: DOWHILE (K .LE. MAXPOS)

-.' 080: OUTLIN(K) ''
0 061: K-K + i

- 062: ENDDO
-. 063:

084: BCOUNT - 1
065: K - 1

. 068: DOWHILE (K .LE. 80)
- 067: GBUFER(K) = 'Z
' 068: K - K + 1

09: ENDDO
- 070:

071: DOWHILE (MOREIN)
072: CW - GCHAR0
073: IF ((CW .EQ. BLANK) OR. (CW .EQ. LINEFD) OR.
074: X (CW .EQ. EOTEXT)) THEN

S075: IF (CW .EQ. EOTEXT) THEN
076: IMOREIN - 0
077: ENDIF

• 078: IF ((FILL+I+BUFPOS) .LE. MAXPOS) THEN
. 079: CALL PCHAR(BLANK)

080: FILL - FILL + i
081: ELSE

- 082: CALL PCHAR(LINEFD)
083: FILL =0
084: ENDIF
085: K=1
086: DOfVHlLE (K .LE. BUFPOS)

33

- (

087: CALL PCHAR(BUFFER(K))
088: K=-K+ 1

*089: ENDDO
090: FILL - FIL~L + BUFPOS
091: BUFPOS = 0

*092: ELSE
*093: IF (BUFPOS .EQ. MA-XPOS) THEN
*094: WRITE(6,10)
*095: 10 FORMAT(','***WORD TO LONG**)

006: MOREIN = 1
097: ELSE
098: BLTFPOS = BUFPOS + 1
099: BUFFER(BUFPOS) = CW

-100: ENDIF
*101: ENDIF

102: ENI)DO
103: CALL PCHAR(LINEFD)

*104: END
105:

* 106:
- 107: CHARACTER. 1 FUNCTION GCHAR()

108: INTEGER MATCH
109: CHA.RACTER*80 GBUFSTR
110:

*111: INTEGER MOREIN, BCOUNT, 1, MiAXPOS
*112: CHARACTER*1 OUTLIN(31), EOTEXT, BLANK, LINEFD).

113: x GBUFER(80)
114: CHARACTERmSO GBUF
115: COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN,
116: X EOTEXT, BLANK. LInEFD, GBUFER, GEUF

* 117:
* 11: EQUWVALENCE (GBtTFSTR,GBUFER)
- 119:

120: IF (GBUFER(l) .EQ. WZ) THEN
121: READ(5,20) GBUF
122: 20 FORMAT(A80)

* 123: C
124: C MATCH(CARRAY,C) RETUJRNS 1 IF CHARACTER C IS IN

CHARACTER ARRAY
-125: C CARRAY. RETURNS 0 OTHERWISE. ARSIZE IS THE SIZE OF CARRAY.

126: C
127: IF (,MATCH(GBUF,EOTEXT) .EQ. 0) THEN
128: WRITE(B.30)
129: 30 FORNLAT(- .'***NO END OF TEXT M4ARK**')
130: GBIJFER(2) =EOTEXT

131: ELSE
132: C GBUFE R() GBUF
133: GBUFSTR GBTJF
134: ENDIF
135: ENDIF
136: GCHAR = GBL7E(CUT
137: BCOUNT BCOUNT i

138: END
139:

7 140:

34

141: SUBROUTINJE PCHAR (C)
142: CHARACTER*1 C
143: CHARACTER*31 SOUT, OUTLINST
144: INTEGER K

* 145:
148: INTEGER MOREIN. BCOUNT, 1, MAJG'OS

*147: CHARACTER*1 OUTLIN(31), GCHAR, EOTEXT, BLANK, LINEFD,
*148: X GBUPER(80)

149: CHLARACTER*80 GBUF
* 150: COMM4ON /ALL/ MOREIN, BCOUNT, IL MAXPOS, OUTLIN,
* 151: X EOTEXT, BLANK, LINEFD, GBUFER, GBIJF

152:
153: EQUIVALENCE (OUTLINST.OUTLIN)
154:
155: IF (C .EQ. LIhJEFD) THEN
156: SOUT = OUTLINST

-157: WRITE(8,40) SOUT
158: 40 FORMAT(' ,A31)

* 159: K=
*160: DOWILE (K .LE. MAkXPOS)
- 161: OUTLIN(K)

162: K K + 1
163: ENDDO
164: 1 =1
165: ELSE
166: OUTLIN(I) =C

167: 1= I+1I
168: ENDIF
169: END

Program 2

* 1: INT XVTDTH = 30,
2: HEIGHT - 20,
3: GRIDWD = 61,
4: LARGENUM = 100000000

- 5: STRING TICKS[811 z

6: + +-+-+-+-+-+-+-+-+ +

7:

9: PROC SORT (TNT ARRAY KEYBUF, TNT ARRAY FREEBLJF, INT N)
10:
11: INT 1. MA- XP
12: INT ARRAY SRTKEYB(100), SRTFREEB(100)
13:
14: I:= 0

*15: WHILE I <NDO
* 16: ~SRTK<EYB(I) KYLFI

*17: SRTFREEB(l) :=FREEBUF(I)

* ~18: 1 4
*19: END

20:
21: I:= N
2*2: NI-.E I > 0DO
23: MLAX = \vL-%'LE(SRTKEYB I)

35

24: CEYBUF(N-I) :- SRTXa)
".25: FREEBUF(N-I) :- SRTFREEB(MAXP)

26: CALL REMOVE(SRTKEYB>MAXP,I)
27: CALL REMOVE(SRTFREEBM&XPI)
28: I:=- 1

" 29: END
30:
31:

_; 32:
33: DNT FUNC MAm 1 E (UThJ ARRAY BUF. nT N)

34:
35: INT I, MAXPTR, MAX
36:
37: M;AXPTR :=- -1
38: MAX :- -LARGENUM
39: I:- 0
40: WHILE I < N DO

* 41: IF BUF(I) > MAX
42: THEN
43: MAX := BUF(I)

' 44: MAXPTR := I
45: END
46: 1:- I+ i
47: END
48: RETURN(MAXP'R)
49:
50:
51:
52: INT FUNC MINELE (INT ARRAY BUF, INT N)
53:
54: INT I. MIPTR. MIN
55:
58: MINPTR := -1
57: MIN:= LARGENUM
58: I:= 0
59: WHILE I < N DO
60: IF BUF(I) < UIN
81: THEN
62: IN :== BLTF()
63: MIIPTR :- I
84: END
65: I:=I +I
66: END

i- . 67: RETU'RN(MINPTR)
.: 68:

69:
70:
71: PROC REMOVE (INT ARRAY BUF, INT PTR, INT N)

• .72:
7 73: INT I
74:
75: I :- PTR
76: VHILE I < N-i DO
77: BTF(I) :- BUF(I+1)
78: I:=I + i

38

79: END
80:
81:
82:
83: INT FUNC ABS (INT VAL)
84:
835: IFVAL < 0
88: THEN
87: RETURN(-VAL)
88: ELSE
8: RETURN(VAL)
90: END
91:
02:
93:
94: INT FUNC SLASH (INT TOP. INT BOT)
95:
96: INT RES
97:
98: RES := TOP/BOT
99: IF TOP < > RES.BOT AND.

100: (TOP > 0 .AND. BOT > O.OR. TOP < 0 AND. BOT < 0)
101: THEN RES :- RES + I

* 102: END
' 103: RETTRN(RES)

104:
* 105: INT FUNC MOD (INT N, INT M)

106:
107: iNT VAL

"" 108:
-109: VAL : N-N/M*M
. 11o: IF VAL < o
Sill, THEN

112: VAL :- VAL + M
113: END
114: RETURN (VAL)
115:
116:
117: PROC MAIN
118:
119: CHAR ARRAY GRID(81)
120: STRING STR(61

- 121: TNT ARRAY XVAL(100). YVAL(100)
. 122: INT I. J. NLMOBS, MAXY.,%AXX. *MINqX. HORISP, VERTSP, VLINE
"- 123:

124: I :- 0
, 125: WHILE .NOT. EOI DO
. 126: READ(XVAL(I),YVAL(I))

127: :,I+ 1
128: END
129: NLUvfOBS := I
130:
131: CALL SORT(YVAL.XVAL.NUMOBS)
132: [AL4XY := YVAL(0)

- 133: VERTSP := SLASH(M2A-XY.HEIGHT)

37

1*:.7."'. . : .'" '. "" "" .. -

m- -. -m-

134:
135: MAXOC:- XVAL(MAXLE(XVAL,NUMOBS))
136: NW4X := XVAL(NMNLE(XVAL.NUMOBS))
137: EF ABS(MNX)A > AES(MAXX)
138: THEN
139: HORISP := SLASH(ABS(MINX,WIDTH)

*140: ELSE
141: HORISP := SLASH(ABS(MAMOQ,WIDTH)
142: END
143:
144: STR :=' X AXIS'
145: WRITE(STR.SKWP)
146: I:==0
147: VLTE:- HEIGHT

*148: WHILE VLINE > 0 DO
149:
150: J:=O0

* 151: IF MOD(VLINE.5) - 0
*152: THEN

153: UNPACK(TICKS,GRID)
*154: ELSE

155: WVfl.E J < GRIDWI) DO
156: GRID(J) "-
157: J:= J+ 1
158: END
159: END
160:
181: VLIE : VLINE - 1
182:
163: WHILE VLINE*VERTSP < YVAL(I) DO
164: IF XVAL(I) >=- 0
165: THEN
166: GRID(WIDTH + SLASH(XVAL(I),HO]RISP)) :
167: ELSE
168: GRID(WIDTH - SLASH(-XVAL(I),HORISP)):
169: END

171: END
172:
173: GRID(WIDTH) --
174: PACK(GRID,STR)
175: WRITE(STR,SKIP)
176: END
177:

* 178:. STR :==

* 179: UNPACK(STR.GRID)
180: WHIE 0 < - YVAL(I) .VLD. I <~ TMOBS DO

*181: IF XVAL(I) > -0
182: THEN
183: GRD(WIDTH + SLASH(XVAL(I),HORISP)) :
184: ELSE
185: GRD(WIDTH - SLASH(-XVAL(I),HORISP)) :
188: END
187:+I

38

188: END
189:
190: PACK(GRDSTR)
191: WRITE(STRSKIP)
192: STR :- ' Y AXS'

. 193: WRITE(STR,SKIP)
.* 194:
. 195: START MAIN

Program 3

001: C NOTE THAT YOU DO NOT NEED TO VERIFY THE FUNCTIONS
DRIVER. GETARG,

002: C CHAREQ. CODE, AND PRINT. THEIR SOURCE CODE IS
DESCRIBED AND

003: C INCLUDED AT THE END FOR COMPLETENESS.
004: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS

INCLUDE A LEADING
005: C AND REQUIRED ' 'FOR CARRIAGE CONTROL

. 006: C
007: INTEGER POOL(7), LSTEND
008: INTEGER LISTSZ

* 009: C
. 010: COMMON /ALL/ LISTSZ

. 011: C
- 012: C

0 013: LISTSZ - 5
014: CALL DRIVER (POOL, LSTEND)
015: STOP

S016: END
~~ 017: C
* 018: C
" 019: FUNCTION ADFRST (POOL, LSTEND, I)

020: INTEGER ADFRST
" 021: INTEGER POOL(7), LSTEND, I

022: INTEGER LISTSZ
* 023: COMMON /ALL/ LISTSZ

024: C
* 025: INTEGER A

028: C
027: IF (LSTEND .GT. LISTSZ) THEN

* 028: LSTEND - LISTSZ - 1
029: ENDIF
030: LSTEND == LSTEND + 1
031: A - LSTEND
032: DOWHILE (A .GE. 1)

- 033: POOL(A+1) - POOL(A)
" 034: A-A-1

035: ENDDO
* 038: C
" 037: POOL(l) = I

038: ADFRST - LSTEND
039: RETURN
040: END

* 041: C

39

.... " - - , .

- -

042: C
043: FUNCTION ADLAST (POOL, LSTEND, I)
044: INTEGER ADLAST
045: INTEGER POOL(7), LSTEND, I
046: INTEGER LISTSZ
047: COMMON /ALL/ LISTSZ
048: C
049: IF (LSTEND .LE. LISTSZ) THEN
050. LSTEND - LSTEND + 1
051: POOL(LSTEND) - I
052: ENDIF
053: ADLAST - LSTEND
054: RETURN
055: END
056: C

*057: C
058: FUNCTION DELFST (POOL. LSTEND)
059: INTEGER DELFST
060: INTEGER POOL(7), LSTEND
061: INTEGER LISTSZ
082: COMMON /ALL/ LISTSZ
063: C
064: INTEGER A
065: IF (LSTEND .GT. 1) THEN
0 066: A = 1

-. 067: LSTEND - LSTEND - 1
-. 08: DOWHILE (A .LE. LSTEND)

069: POOL(A) - POOL(A+1)
070: A - A + 1

* 071: ENDDO
* 072: ENDIF

0 073: DELFST - LSTEND
074: RETURN

* 075: END
076: C
077: C

; 078: FUNCTION DELLST (LSTEND)
079: INTEGER DELLST

" 080: INTEGER LSTEND
* 081: C

082: 'T (LSTEND .GE. 1) THEN
083: LSTEND - LSTEND - 1

. 084: ENDIF
. 085: DELLST - LSTEND

086: RETURN
S087: END

*088:C
089: C
090: FUNCTION FIRST (POOL, LSTEND)
091: INTEGER FIRST
092: INTEGER POOL(7), LSTEND

*093: C
" 094: IF (LSTEND .LE. 1) THEN

095: FIRST 0
* 096: ELSE

40

h

-: * . -.. -.. • , .* .--.. , .. .** :.

007: FIRST - POOL(t)
098: ENDIF
099: RETURN
100: END
101: C
102: C
103: FUNCTION EMPTY (LSTEND)
104: INTEGER EMPTY
105: INTEGER LSTEND
106: C
107: IF (LSTEND .LE. 1) THEN
108: EMPTY - 1
109: ELSE
110: EMPTY - 0
Ill: ENDIF
112: RETURN
113: END
114: C
115: C
116: FUNCTION LSTLEN (LSTEND)
117: INTEGER LSTLEN
118: INTEGER LSTEND
119: C
120: LSTLEN = LSTEND - 1
121: RETURN
122: END
123: C
124: C
125: FUNCTION NENVLST (LSTEND)
128: INTEGER NEWLST
127: INTEGER LSTEND
128: C
129: NEWLST = 0
130: RETURN
131: END
132: C
133: C
134: SUBROUTINE REVERS (POOL, LSTEND)
135: INTEGER POOL(7), LSTEND
136: C
137: INTEGER I. N
138: C
139: N = LSTEND
140: 1=1
141: DOW-ILE (I .LE. N)
142: POOL(I) = POOL(N)
143: N N -
144: I=I+t
145: ENDDO
146: RETURN
147: END

Program 4

001: C NOTE THAT YOU DO NOT NEED TO VERIFY THE ROUTINES

41

EL

DRIVER, STREQ. WORDEQ.
002: C NXTSTR, ARRCPY, CHARPT. BEFORE, CHAREQ. AND WRDBEF.

TMMI SOURCE
003: C CODE IS DESCRIBED AND INCLUDED AT THE END FOR

COMLETENESS.
004: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS

INCLUDE A LEADING
005: C AND REQUIRED ''FOR CARRIAGE CONTROL

* 008: C THE SFORT LANGUAGE CONSTRUCT '-IF (FEaPRESSION)' BEGINS
A BLOCKED

007: C IF-THEN j-ELSE] STATEMENT, AND IT IS EQUIVALENT TO
THE F77

008: C 'IF (EXPRESSION) THEN'.
009: C
010: CALL DRIVER
011: STOP
012: END
013: C
014: C
015: SUBROUTINJE MAIhJSB
016: C
017: LOGICAL*1 U$KE;Y(3),U$AUTH(11),U$TITL(58),U$YEAR(2),U$ACTN(l)
018: LOGICAL* 1 M$KEY(3).M$AUTH(11),M$TITL(58),M$YEAR(2)
019: LOGICALal ZZZ(3), LASTtJK(3), LASTMK(3)
020: LOGICAL*1 STREQ, CHAREQ. BEFORE, CHARPT
021: INTEGER I
022: C
023: LOGICAL*I WORD(500,12), REPKEY(l000,3)
024: INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000)
025: COMMION /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT

* 026: C
027: WRITE(8,290)
028: 290 FORMAT(' ',' UPDATED LIST OF MLASTER ENTRIES')
029: DO0300 1- 1, 3
030: LASTMfl(I) = CHARPT(')
031: LASTUK(I) = CHARPT(')
032: ZZZ(I) = CHARPT(Z')
033: 300 CONTINUE
034: C
035: NUMWDS=-0
036: NUMREF - 0
037: CALL GETNM(MKEY,MAUTH,M$TIThMYEA,LASTMK)
038: CALL GETNLTP(U$KEY,USAUTH,U$TITL .U$YEAR.U$ACTN,LASTUK)
039: C

* 040: DOWNILE ((.NOT.(STREQ(M$KEY.ZZZ,3))) .OR.
041: X (.NOT.(STREQ(U$KEY,ZZZ,3))))

*042: -IF (STREQ(USKEY,MS$KEY,3))
043: -IF (.NOT.(CHAREQ(USACTN(l),'R')))

*044: WRITE(6,100) USKEY
*045: 100 FORMAT(' '.I=Y ',3A1,' IS ALREADY IN FILE')
*048: EINDIF

047: CALL OUTPUT(USKEY,U$AUTH.U$TITL ,U$YAR)
048: CALL DICTUP(U$KEYU$TITL,58)
049: CALL GETNMv(MSKEY.Mf$AUTH,M$TITL, ,M$YEAR.LASTMIK)
050: CALL GETNVP(USKEY,USAUTH,U$TITL .U$YEAR.U$ACTN,LASTUK)

42

*051: ENDIF
* 052: C

053: -IF (BEFORE(M$KEY,3,U$KEY,3))
* 054: CALL OUTPUT(M$KEYM$AUTHM$TITLM$YEAR)

055: CALL DICTUP(M$KEY.M$TITL,58)
058: CALL GETNM(MKEY,MAUTH.M$TITLM$Y'EARL.ASTMC)
057: ENDIF

* 058: C
059: -IF (BEFORE(USKE Y,3,M$KEY,3))
080: -IF (CHAREQ(USACTN(1).RW))
081: WRITE(6,110) U$KEY
082: 110 FORMAT(* .UPDATE KEY *,3A1,' NOT FOUND-)
063: ENDIF
064: CALL OUTPUT(UKEY,UAUTH,tJ$TrTL,U$YEAR)
065: CALL DICTUP(USKEY,USTITL.58)

*088: CALL GETNUP(U$KCEYU$AUTH.U$TITL ,TJYEAR,U$ACTN,L.ASTUK)
067: ENDIF

*068: ENDDO
* 069: C

07 0: CALL SRTWDS
*071: CALL PRTWDS

072: RETURN
-073: END
* 074: C

075: C
078: SUBROUTINE GETNM(KEYAUTH,TITLYEAR.LASTMK)

*077: LOGICAL.1 KEY(3).AUTH(11),TrTL(58),YEAR(2),LASTMK(3)
078: C

*079: LOGICAL.1 SEQ, INLU-TE(80)
-080: LOGICALwi BEFORE. CHARPT. CHAREQ
*081: LOGICALal GOSM, GO$U
- 082: COMMivON /DRIV/ GOSM. GO$U
* 083: C

084: SEQ = 1
*085: DOWHILE (SEQ)
* 086: -IF' (GO$M)

087 C
* 088: C READ FROM THE MASTER FILE
* 0890:C

090: READ(102o.END-299) INLINE
-091: ELSE

092: C
* 093: C SEE REMARK ABOUT THE CHARACTER 'W'LATER IN THE ROUTINE.
* 094: C
*095: INLINE(1) - CHARPT('%')
-096: ENDIF
*007: 200 FORMAT(80A1)

*098: DO 2101 =1, 3
*099: KEY(I) - INLINE(I)

100: 210 CONTINUE
101: DO 220 1 -1, 11
102: AIJTH(I) - INLINE(3+I)
103: 220 CONTINUE
104: DO 230 1=158
105: TITL(I - IN4LLNE(14+I)

43

106: 230 CONTINUE

107: DO 240 1 - 1. 2
108: YEAR(I) - INLINE(72+I)
109: 240 CONTINUE
110: C
111: C A METHOD OF SPECIFYING END-OF-FILE IN A FILE IS TO PUT

THE CHARACTER %'
112: C AS THE FIRST CHARACTER ON A LINE. THE DRIVER USES THIS

FOR MULTIPLE
113: C SETS OF INPUT CASES.
114: C
115: .IF ((.NOT.(CHAREQ(KEY(1),'%'))) .AND.

* 118: X (BEFORE(KEY,3,LASTM,3)))
S117: WRITE(8,20) KEY

118: 250 FORMAT(' ',KEY ',3A.,' OUT OF SEQUENCE')
- 119: ELSE

120: CALL ARRCPY(KEYLASTMK,3)
121: SEQ = 0
122: ENDIF
123: .IF (CHAREQ(KEY(),'%'))
124: SEQ - 0
125: DO 2701 1.3
128: KEY(I) - CHARPT('Z')
127: 270 CONTINUE
128: ENDIF
129: ENDDO
130: RETURN
131: 299 CONTINUE
132: GOM == 0
133: DO 2801 - 1, 3
134: KEY(I) = CHARPT('Z')
135: 280 CONTINUE
138: RETURN

137: END
138: C
139: C

* 140: SUBROUTINE GETNUP(KEYAUTHTITL, fEARACTN,LASTUK)
141: LOGICAL*I KEY(3),AUTH(11),TITL(58),YEAR(2),ACTN(1),LASTUK(3)
142: C

. 143: LOGICAL*l SEQ, INLINE(80)
144: LOGICAL*1 BEFORE, CHARPT, CHAREQ
145: LOGICAL*1 GOM, GOU
146: COMMON /DRIV/ GO$M, GOSU

* 147: C
148: SEQ= 1
140: DOW1HILE (SEQ)

* 150: .IF (GO$U)
151: C

. 152: C READ FROM THE UPDATES FILE
153: C

" 154: READ(I1,200.END=29g) INLINE
155: ELSE
156: C
157: C SEE REMARK ABOUT THE CHARACTER '% LATER LN THE ROUTINE.
158: C

44

',.:.:.....-. . . -...- --............. .. * , .-.. ,-v ---.... . . . -.-..
*llm I~lm ~' .

159o: INLINE(1) CHARPT('%-)
180: ENDIF
181: 200 FORMAT(80A1)
162: DO 210 1 = 1, 3
183: KEY(I) = INLINE(I)
184: 210 CONTINUE
185: DO 220 1 = 1, 11
166: AUTH(I) = INLINE(3+I)
187: 220 CONTINUE

* 168: DO 230 1 =- 1, 58
189: TITL(I) - INLINE(14+I)
170: 230 CONTINUE
171: DO 2401- ,12
172: YEAR(I) = INLINh'E(72+I)
173: 240 CONTINUE
174: ACTN(1) = INLINE(75)
175: C
178: C A METHOD OF SPECIFYING END-OF-FILE IN A FILE IS TO PUT

THE CHARACTER '%'
* 177: C AS THE FIRST CHARACTER ON A LINE. THE DRIVER USES THIS

FOR MULTIPLE
178: C SETS OF INPUT CASES.
179: C
180: .IF ((.NOT.(CHAREQ(KEY(1),'%'))) AND.
181: X (BEFORE(KEY,3,LASTUK,3)))
182: WRITE(8.250) KEY
183: 250 FORMAT(' 1,'KEY ',3A.' OUT OF SEQUENCE')
184: ELSE
185: CALL ARRCPY(KEY,LASTUK,3)

* 188: SEQ = 0
187: ENDIF

. 188: .IF (CHAREQ(KEY(i),'%'))
189: SEQ - 0
190: DO 270 1 = 1, 3
191: KEY(I) = CHARPT('Z')
192: 270 CONTINUE

• 193: ENDIF
194: ENDDO
195: RETURN

*196: 299 CONTINUE
197: GO$U = 0
198: DO 260 1 = 1, 3
199: KEY(1) - CHARPT('Z')
200: 260 CONTINUE
201: RETURN
202: END

*203: C
* 204: C
. 205: SUBROUTINE OUTPUT(KEY,AUTH,TITL,YEAR)

208: LOGICAL*1 KEY(3), AUTH(11), TITL(58). YEAR(2)
207: C
208: WRITE(8,200) KEY, AUTH, TITL, YEAR
209:200 FORMAT(' ,3AI.11Al.58AI,2AI)
210: RETURN
211: END

45

'.........- "-"-.-".- ..-...-.-.- .,. - ** ... v -..: . * .* ' - *. v > :t V
, ,I , m,,l,-,..,..,.....*I l ,,. *,.*,,. l l~l''ll* 'l*ll.l l-l*..llll l *

212: C
213: C
214: SUBROUTINE PRTWDS
215: C
216: LOGICAL*1 WORD(500,12), REFKEY(1000,3)

" 217: INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000)
218: COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT
219: C
220: C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A LINKED

LIST.
221: C WORD(I,J) IS A KEYWORD - J RANGING FROM 1 TO 12
222: C REFKEY(PTR(I).K),K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS

ASA
223: C KEYWORD WORD(I,J),J-I,12
224: C REFKEY(NEXT(PTR(I)),K),K-1.3 IS THE SECOND 3 LETTER KEY

THAT HAS
225: C AS A KEYWORD WORD(I,J),J-1.12
226: C REFKVY(NEXT(NEXT(PTR(I))),K),K-1,3 IS THE THIRD ... ETC.
227: C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER

KEYS FOR
228: C THE PARTICULAR KEYWORD

- 229:C
230: INTEGER 1. J
231: LOGICAL*1 FLAG
232: C
233: WRITE(6,200)
234: 200 FORMAT(' ',' KEYWORD REFERENCE LIST')
235: DO 210 I - 1, NUMWDS
236: FLAG = 1
237: WRITE(6,220) (WORD(I,J),J=1,12)
238: 220 FORMAT(, ',12A1)
239: LAST = PTR(I)
240: DOWHILE (FLAG)
241: WRITE(6,230) (REFKEY(LAST,J),J-1,3)
242: 230 FORMAT('',, ',3A1)

S.243: LAST - NEXT(LAST)
' 244: IF (LAST .EQ. -1)

245: FLAG - 0
246: ENDIF
247: ENDDO
248: 210 CONTINUE
249: RETURN
250: END
251: C
252: C

. 253: SUBROUTINE DICTUP(KEY,STRSTRLEN)
254: LOGICAL*1 KEY(3), STR(120)

* 255: INTEGER STRLEN
256: C
257: LOGICAL*I WDLEFT, FLAG, OKLEN, NEXTWD(120), VORDEQ
258: INTEGER LPTR, NXTSTR, LEN, LAB, I, K
259: C
280: LOGICAL* WORD(500,12), REFKEY(1000,3)
261: INTEGER NUMWDS, NU REF, PTR(500), NFXT(i000)
262: COMIMON /WORDS/ WORD, REFKEY, NUNWDS. NUMREF, PTR, NEXT

" 40

* . *"* ."- - - -."%" '."•-"-." . . - - "2 , - ". ."-;' - "- " -"-'-"- ,-, .J
-:¢ .. t . - . - - - . - . - . .. ;..'. ; -,,= .,: o - - . . . - - , . ..

i 263: C
*284: C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A

LINKED LIST.
., 288: C WORD(IJ) IS A KEYWORD - J RANGING FROM 1 TO 12

- 266: C REFKEY(PTR(I),K),K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS

ASA
267: C KEYWORD WORD(I,J),J=..,12
268: C REFKEY(NEXT(PTR()),K)K=1,3 IS THE SECOND 3 LETTER KEY

THAT HAS
289: C AS A KEYWORD WORD(I,J),J-1.12
270: C REFKEY(NEXT(NEXT(PTR(I))),K),K-1.3 IS THE THIRD ... ETC.

271: C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER
KEYS FOR

272: C THE PARTICULAR KEYWORD
273: C
274: WDLEFT = I

" 275: LPTR - 1
278: C
277: DOWHILE (WDLEFT)
278: FLAG =i
279: OKLEN = i

280: LEN = NXTSTR(STR,STRLEN,LPTR,NEXTWD,120)
281: .IF (LEN .EQ. 0)
282: WDLEFT - 0
283: ENDIF
284: C
285: F (LEN .LE. 2)
286: OKLEN - 0
287: ENDIF

. 288: C
" 289: .IF (OKLEN)
"" 290: I=1

291: DOWHILE ((I .LE. NUMWDS).ND. FLAG)

292: .IF (WORDEQ(NEXTWD,I))
- 293: LAB - I

294: FLAG = 0
" 295: ENDIF

298: 1= I + 1
297: ENDDO
298: IF (FLAG)

*299: NUMWDS = NUMVDS + 1
* 300: NUMREF - NUMREF + I

301: DO 300 K 1, 12

" 302: WORD(NUMWDS,K) - NEXTWD(K)

. 303: 300 CONTINUE
304: PTR(NUMWDS) - NTMREF
305: DO 310 K = 1, 3
308: REFKEY(NIUMREF,K) = KEY(K)

. 307: 310 CONTINUE
308: NEXT(NUNMEF) = -

' 309: ELSE
310: NUMREF - NUMREF + 1

311: DO 320 K = 1, 3
312: REFKEY(N/UMREF,K) = KEY(K)
313: 320 CONTINUE

47

, :---. , -..--. . ..-.-'--...-. ...--... ..'..-.-.'-..-. ..--. ---- -. .*-- -*-':-:-i .::: -'-::
" -:i' . ": :.':2 :.:.'. .:

314: NED'r(NUMREF) - PTR(LAB)
315: PTR(LAB) - NUREF
316: ENDIF
317: ENDIF
318: ENDDO
319: C
320: RETURN
321: END
322: C
323: C
324: SUBROUTINE SRTWDS

* 325: C
326: LOGICAL*1 WORD(500,12), REFKEY(1000,3)
327: INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000)
328: COMMON /WORDS/ WORD, REFKEY, NUMWDS. NUMREF, PTR, NEXT
329: C
330: C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A

LINKED LIST.
331: C WORD(Ij) IS A KEYWORD - J RANGING FROM 1 TO 12
332: C REFKEY(PTR(I),K),K,1,3 IS THE FIRST 3 LETTER KEY THAT HAS

ASA
333: C KEYWORD WORD(I.J),J=1,12
334: C .REFKEY(NEXT(PTR(I)),K),K 1,3 IS THE SECOND 3 LETTER KEY

% THAT HAS
335: C AS A KEYWORD WORD(IJ),J=1,12
336: C REFKEY(NEXT(NED(PTR(I))),K),K=1,3 IS THE THIRD ... ETC.
337: C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER

KEYS FOR
338: C THE PARTICULAR KEYWORD
339: C

- 340: INTEGER 1. J. K, LAB, LOWER.B, UPPERB
. 341: LOGICAL*l WRDBEF, NEXTWD(12)
. 342: C

343: UPPERB = NUMWDS - 1
344: DO 400 I = 1, UPPERB
345: LOWERB = I + I
346: DO 410 J -= LOWERB, NUMWDS
347: .IF (WRDBEF(JI))
348: DO 300 K = 1, 12

- 349: NEXTWD(K) = WORD(I.K)
350: 300 CONTINUE
351: LAB = PTR(I)
352: DO 31o K = 1. 12
353: WORD(I.K) = WORD(J,K)
354:310 CONTU-'UE
355: PTR(I) - PTR(J)
356: DO 320 K - 1, 12
357: WORD(J,K) - NEXTWD(K)

- 358: 320 CONTINUE
. 359: PTR(J) LAB
d 360: ENDIF

361: 410 CONTINUE
362: 400 CONTINUE
363: C
364: RETURN

48.

, '.- "'-.''.-' -''-.. '-;- "'.-''-,'" -'''. .- " * / ;. * . *' * - * .. . * -. , '''. .- ,,....'V'',.. ''

-385: END

4g

8. References

[BasUl & Turner 78]
V. R. BasIli and A. J. Turner, SIMPL-T: A Structured Programming
Language, Paladin House Publishers, Geneva, IL, 1978.

[Basill & Perricone 84]
V. R. Baslll and B. T. Perricone, Software Errors and Complexity: An Em-
pirical Investigation, Communications of the ACM 27, 1, pp. 42-52, Jan.
1984.

(Basll! & Selby 84]
V. R. Basill and R. W. Selby, Jr., Data Collection and Analysis in Software
Research and Management, Proceedings of the American Statistical Associa-
tion and Biometric Society Joint Statistical Meetings, Philadelphia, PA, Au-
gust 13-18, 1984.

[Basill & Weiss 84]
V. R. Basill and D. M. Weiss, A Methodology for Collecting Valid Software
Engineering Data*, Trans. Software Engr. SE-10, 8, pp. 728-738, Nov. 1084.

[Box, Hunter, & Hunter 78]
G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters,
John Wiley & Sons, "4ew York, 1978.

* (Callliau & Rubin 79]
R. Callilau and F. Rubin, ACM Forum: On a Controlled Experiment In Pro-
gram Testing, Communications of the ACM 22, pp. 887-8, Dec. 1979.

* [Church 84]
V. Church, Benchmark Statistics for the VAX 11/780 and the IBM 4341,
Computer Sciences Corporation, Sliver Spring, MD, Internal Memo, 1984.

*[Cochran & Cox 50]
W. G. Cochran and G. M. Cox, Experimental Designs, John Wiley & Sons,
New York, 1950.

(Fagan 78]
M. E. Fagan, Design and Code Inspections to Reduce Errors In Program De-
velopment, IBM Sys. J. 15, 3, pp. 182-211, 1978.

(Foster 80]
K. A. Foster, Error Sensitive Test Cases, IEEE Trans. Software Engr. SE-6,
3, pp. 258-284, 1980.

50

*: (Gloss-Soler 79]
S. A. Gloss-Soler, The DACS Glossary: A Bibliography of Software Engineer-
Ing Terms, Data &: Analysis Center for Software, GrIffIss Air Force Base, NY
13441, Rep. GLOS-1, Oct. 1979.

[Goodenough & Gerhart 75]
J. B. Goodenough and S. L. Gerhart, Toward a Theory of Test Data Selec-
tion, IEEE Trans. Software Engr., pp. 156-173, June 1975.

[Hetzel 781
W. C. Hetzel, An Expermental Analysis of Program Verification Methods,
Ph.D. Thesis, Univ. of North Carolina, Chapel Hill, 1978.

[Howden 781
W. E. Howden, Algebraic Program Testing, Acta Informatica 10, 1978.

[Howden 80]
W. E. Howden, Functional Program Testing, IEEE Trans. Software Engr.
SE-6, pp. 162-189, Mar. 1980.

[Howden 81][Hw W.E. Howden, A Survey of Dynamic Analysts Methods, pp. 209-231 In Tu-

torial: Software Testing 8F Validation Techniques, 2nd Ed., ed. E. Miller and
W. E. Howden, 1981.

[Hwang S]
S-S. V. Hwang, An Empirical Study In Functional Testing, Structural Test-
Ing, and Code Readlng/Inspectlon*, Dept. Com. Sc., Unlv. of Maryland,
College Park, Scholarly Paper 382, Dec. 1981.

[IEEE 83]
IEEE, IEEE Standard Glossary of Software Engineering Terminology, Rep.
IEEE-STD-729-1983, IEEE, 342 E. 47th St, New York, 1983.

-. [Jensen & Wirth 74]
K. Jensen and N. Wlrth, -PASCAL User Manual and Report, 2nd Ed.,
Springer-Verlag, New York, 1974.

[Johnson, Draper & Soloway 83]
V. L. Johnson, S. Draper, and E. Soloway, An Effective Bug Classification

1,4 Scheme Must Take the Programmer into Account, Proc. Workshop High-
Level Debugging, Palo Alto, CA, 1983.

'4
. 5 1

-. I.a *~*

[Linger, Mills & Wltt 79]
R. C. Linger, H. D. Mills, and B. I. Vltt, Structured Programming: Theory
and Practice, Addison-Wesley, Reading, MA, 1979.

[McMullin & Gannon 80]
P. R. McMullln and J. D. Gannon, Evaluating a Data Abstraction Testing

.- System Based on Formal Speciflcations, Dept. Com. Scl., Univ. of Maryland,
College Park, Tech. Rep. TR-993, Dec. 1980.

[Mills 72]
H. D. Mills, Mathematical Foundations for Structural Programming, IBM
Report FSL 72-8021, 1972.

(Mills 75]
H. D. Mills, How to Write Correct Programs and Know It, Int. Conf on Re-
liable Software, Los Angeles, pp. 383-370, 1975.

[Myers 78]
G. J. Myers, A Controlled Experiment In Program Testing and Code
Walkthroughs/Inspectlons, Communications of the ACM, pp. 760-788, Sept.
1978.

". [Myers 79]
G. J. Myers, The Art of Software 'Testing, John Wiley & Sons, New York,
1979.

[Naur 89]
P. Naur, Programming by Action Clusters, BIT 9, 3, pp. 250-258, 1989.

[Ostrand & Weyuker 83]
T. J. Ostrand and E. J. Weyuker, Collecting and Categorizing Software Er-
ror Data In an Industrial Environment, Dept. Com. Scl., Courant Inst. Math.
Scl., New York Univ., NY, Tech. Rep. 47, August 1982 (Revised May 1983).

. (Selby 831
R. W. Selby, Jr., An Empirical Study Comparing Software Testing Tech-
niques, Sixth Minnowbrook Workshop on Software Performance Evaluation,
Blue Mountain Lake, NY. July 1-22, 1983.

[Seby 841 R W. Selby, Jr., Evaluating Software Testing Strategies, Proc. of the Ninth

Ann sal Software Engineering Workshop, NASA/GSFC, Greenbelt, NvD, Nov.
1984.

52

,%-"- ,...,-.-..... . * .-.. .'.. ..- . -. "-"...- :. -,-....-,.....-........,...

[Selby, Basill & Baker 851
R. W. Selby, Jr., V. R. Basill, and F. T. Baker, CLEANROOM Software De-
velopment: An Empirical Evaluation, Dept. Com. Scl, Univ. Maryland, Col-
lege Park, Tech. Rep. TR-1415, February 1Q85. (submitted to the IEEE
Trans. Software Engr.)

[Stucki 771
L. G. Stuckl, New Directions In Automated Tools for Improving Software
Quality, In Current Trends in Programming Methodology, ed. R. T. Yeh,
Prentice Hall, Englewood Cliffs, NJ, 1977.

[Valdes & Goel 83]
P. M. Valdes and A. L. Goel, An Error-Specific Approach to Testing, Proc.
Eight Ann. Software Engr. Workshop, NASA/GSFC, Greenbelt, MD, Nov.
1983.

[Weiss & Basill 85]
D. M. Weiss and V. R. BasIll, Evaluating Software Development by Analysis
of Changes: Some Data from the Software" Engineering Laboratory, IEEE
Trans. Software Engr. SE-il, 2, pp. 157-168, February 1985.

53

................................h'.-

Figure 1. Cap ablitles of the testing methods.
code reading functional structural

testing testing

view program
specification X X X

view source
code X X

execute
program X X

Figure 2. Structure of goals/sub goals/ questions for testing experiment.

1. Fault detection effectiveness

A. For programmers doing unit testing, which of the testing techniques
(code reading, functional testing, or structural testing) detects the
most faults In programs?

1. 'Which of the techniques detects the greatest percentage of faults In
the programs (the programs each contain a different number of
faults)?

2. Which of the techniques exposes the greatest number (or percentage)
or program faults (raults that are observable but not necessarily
reported)?

B. Is the number of faults observed dependent on software type?

C. Is the number of faults observed dependent on the expertise level of the
person testing?

HI. Fault detection cost

A. For programmers doing unit testing, which of the testing techniques
(code reading, functional testing, or structural testing) detects the
faults at the highest rate (#faults/ effort)?

B. Ls the fault detection rate dependent on software type?

C. Is the fault detection rate dependent on the expertise level of the person
testing?

MII. Classes of faults observed

A. For programmers doing unit testing, do the methods tend to capture
different classes of faults?

B. What classes of faults are observable but go unreported?

Figure 3. Expertise levels of subjects.

Phase
Level of 1 2 3 total
Expertise (Unlv. Md) (Univ. Md) (NASA/CSC)

" Advanced 0 0 8 8
Intermediate 9 4 11 24
Junior 20 9 13 42
total 29 13 32 74

F1gure 4. The programs tested.
source executable cyclomatic #routines #faults

program lines statments complexity
P, - text 189 55 18 3 9
formatter

Pgo - mathematical 145 95 32 8 6
plotting

P - numeric data 147 48 18 9 7
abstraction

P4 - database 365 144 57 7 12

maintainer

22-. :.., . ..-... -.-. ', . .,,... ,..,.,-.,,,..:. .' . ', *.......,,.... -..... < ...

Figure 5. Programs tested In each phase of the analysi1s.

Program Phase

1 2 3
"._(Univ. Md) (Univ. Md) (NASA/CSC)

P1 - text formatter X X X
P - mathematical plotting X X
P 8 - numeric data abstraction X X
P, - database maintainer X X

Figure 8. Distributlon of faults In the programs.

_Omission Commission Total
Initialization 0 2 2
Computation 4 4 8
Control 2 5 7
Interface 2 11 13
Data 2 1 3
Cosmetic 0 1 1
Total 10 24 34

FIgure 7. Fault classification and manifestation.
FaultProgram Omission/ Class Description

Commission
a P1 omission control a blank Is printed before the first word

on the first line unless the first word Is
30 characters long; In the latter case, a
blank line Is printed before the first
word

b P1 commission Initializatlonthe character & (not$) Is the new-line
character

c P1 commission Initlallzatlonthe line size Is 31 characters (not 30);
this fault causes the references to the
number 30 In the other faults to be ac-

tually the number 31
d P1 commission Interface since the program pads an empty input

buffer with the character "z," It ignores
a valid input line that has a "z" as a
first character

e P1 omission control successive break characters are not con-
densed In the output

.

-.. . . ~

f P1 commission cosmetic spelling mistake In the error message
,*** word to long ***"

g P1 commission computationafter detecting a word In the Input
longer than 30 characters, the message
"*** word to long ***" Is printed once

for every character over 30, and the pro-
cessing of the text does not terminate

h P1 omission Interface after detecting a word in the Input
longer than 30 characters, the program
prints whatever Is residing In Its output
buffer

I P1 commission control after detecting an Input line without an
end-of-text character, the program er-
roneously Increments Its buffer pointer
and replaces the first character of the
next Input line with a "z"

J P3 commission Interface routine FIRST returns zero (0) when the
list has one element

k P3 commission Interface routine ISEMPTY returns true (1) when
the list has one element

S P3 commission Interface routine DELETEFIRST can not delete
the first list element when the list has
only one element

m P3 commission Interface routine LISTLENGTH returns one less
than than the actual length of the list

n P3 commission Interface routine ADDFIRST can add more than
the specified five elements to the list

o P3 commission Interface routine ADDLAST can add more than
the specified five elements to the list

p P3 omission computationroutine REVERSE does not reverse the
list properly when the list has more than
one element

q P4 commission computationwords greater than or equal to three
characters (not strictly greater than) are
treated as cross reference keywords

r P4 commission Interface since the program uses the key "ZZZ" as
an end-of-input sentinel, It does not pro-
cess a valid record with key "ZZZ" and
ignores any following records

s P4 commission control update action add with the error condl-
tion "key already In the master file" re-
places the existing record; the update
record Is not Ignored

t P4 commission control update action replace with the error con-
ditlon "key not found In the master file"
adds the record; the update record Is not
ignored

u P4 omission data the number of references and number of
words In the dictionary are not checked
for overflow

v P4 omission computationtwo or more update transactions for the
same master record give Incorrect results

w P4 commission Interface keywords longer than 12 characters are
truncated and not distinguished

x P4 commission control an update record with column 80 neither
an add action "A" nor replace action
"R" acts like an add transaction

y P4 commission Interface keyword Indices appear In reverse alpha-
betical order

z P4 omission Interface no check Is made for unique keys In the
master file

A P4 commission Interface punctuation Is made a part of the key-
word

B P4 omission data words appearing twice In a title get two
cross reference entries

C P2 commission computatlonthe x and y axes are mislabeled
D P2 omission computation points with negative y-values are not

processed and do not appear on the
graph

E P2 commission control the origin (0,0) appears on the graph re-
gardless of whether It Is an Input point

F P2 commission data no points can appear on the vertical axis
G P2 commission computatlonthe vertical and horizontal scaling for

the pixels are calculated Incorrectly,
causing some points not to appear In the
proper pixel

H P2 omission computationw hen more than one point would appear
In a given pixel, only an asterisk (*) ap-
pears, not an appropriate Integer

S-.

'5" ,- . Li.

Flgure 8. Fractional Factorial Design•

Code Functional Structural
Reading Testing Testing

P, P1 P 4 PIPSP4 PIPSP4

S, -x -x-
Advanced So -X- X -
Subjects

S8 x- -x --

S 9 -X- X- .x
Inter- S1 o - -X- X.
mediate
Subjects

,19 X- X -X-

S 20 -X- X- -x
Junior S 2 1 X- -x-X-

Subjects .

S32 -x -X--

V.:

Figure 9. Overall summary of detection effectiveness data.
Note: some data pertain to only on-line techniques (*), and

some data were collected only In certain Phases.

Phase #SubJ. Measure Mean SD Min. Max.

1 29 # Faults detected 3.94 1.82 0.00 7.00

1 29 % Faults detected 54.78 26.11 0.00 100.00

1 29(*) # Faults observable 5.38 1.51 3.00 8.00

1 29(*) % Faults observable 74.59 20.54 33.3 100.00

1 29(*) % Detected/observable 70.99 24.01 0.00 100.00

2 13 # Faults detected 3.28 1.96 0.00 7.00

2 13 % Faults detected 39.53 27.25 0.00 100.00

3 32 # Faults detected 4.27 1.88 0.00 8.00
3 32 % Faults detected 49.82 27.44 0.00 100.00

3 32 % Faults felt found 75.10 24.07 0.00 100.00

3 32(*) #& Faults observable 5.61 1.52 3.00 9.00

3 32(*) % Faults observable 62.11 18.38 25.00 100.00

3 32(*) % Detected/observable 69.67 27.14 0.00 100.00

3 32(*) Max. % stmt. covered 97.02 7.83 46.00 100.00

Ave 74 : Faults detected 3.97 1.88 0.00 8.00

Ave 74 % Faults detected 49.96 27.29 0.00 100.00

Ave 61(*) # Faults observable 5.5 1.5 3.00 9.00

Ave 61(,) % Faults observable 68.0 20.3 25.0 100.0

Ave 61* % Detected /obse rvab le 70.3 25.6 0.0 j100.0

.i .

Figure 10. Distribution of the number of faults detected broken down by phase. Key: code
readers (C). functional testers (F), and structural testers (S).

S
- S S

S Phase 1: S Phase 3:
S 87 observations S 96 observations
S S
S F
S F
S S F
F S F
F S F S

S F S S F S
S F S S F S S
S F S S S F F S
S F S F S F S F F
S C S F S F S F F
S C F S S F S S F F F C
S C F S S F S S F F F C
F C F F S F S F F F F C
F C F F F C S F F F C C
F C F F F C S S F C F C C

S F C F F F C S S C C C C C
S C C C C F C S F C C C C C
C C C C C C C S S C C C C C C

S C C C C C C C C F C C C C C C C

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

S S Phase 2:
S S 39 observations

S S S
S S F S
C S F F S F

S C F F C F F
F F F C F FC C C C C C C C

I ', ', I I I, , , I

0 1 2 3 4 5 6 7 8 9

N.

.

.

FIure 11. Overall summary for number of faults detected.
Phase

1 2 3
Effect Level Mean(SD) Mean(SD) Mean(SD)

Technique Reading 4.10 (1.93) 3.00 (2.20) 5.09 (1.92)
Functional 4.45 (1.70) 3.77 (1.83) 4.47 (1.34)

Structural 3.28 (1.67) 3.08 (1.89) 3.25 (1.80)
Program Formatter 4.07 (1.62) 3.23 (2.20) 4.19 (1.73)
... .. Plotter 3.48 (1.45) 3.31 (1.97) . G)

Data type 4.28 (2.25) G) 5.22 (1.75)

Database .(.) 3.31 (1.84) 3.41 (1.66)

Expertise Junior 3.88 (1.89) 3.04 (2.07) 3.90 (1.83)
Intermed. 4.07 (1.89) 3.83 (1.64) 4.18 (1.99)

Advanced . (.) . (.) 5.00 (1.53)

Figure 12. Overall summary of fault detection cost data. Note:
some data pertain to only on-line techniques (*), and some.
data were collected only In certain phases.

Phase LSubj. Measure Mean SD Min. Max.
1 29 # Faults / hour 1.63 1.28 0.00 7.00
1 29 Detection time (hrs) 3.33 2.09 0.75 10.00
2 13 # Faults / hour 0.99 0.81 0.00 3.00
2 13 Detection time hrs) 4.70 3.02 1.00 14.00
3 32 # Faults / hour 2.33 2.28 0.00 14.00
3 32 Detection time (hrs) 2.75 1.57 0.50 7.25
3 32(*) Cpu-time (sec) 45.2 56.1 3.0 283.0
3 32(*) Cpu-time (sec; norm.) 38.5 51.7 2.9 314.4
3 32(*) Connect time (min) 85.83 50.21 3.50 214.00
3 32(*) 4 program runs 5.45 5.00 1.00 24.00

Ave 74 # Faults / hour 1.82 1.80 0.00 14.00
Ave 74 Detection time (hrs) 3.32 2.19 0.50 14.00

Figure 13. Distribution of the fault detection rate (#faults detected per hour) broken down
by iphase. Key: code readers (C), functional -testers (F). and structural testers (S)l.

S
S
S Phase 1: Phase 3:

SS 87 observations 96 observations
ss S
SS S

SS SF
FSS SF
FFS SF5
FF5 SFS
FFSS FFS S
FFSS FFS S
FFFS SFTF S
CFFF SFCF F
CFFF SFCF F S
OCFF S SSFCFSF S

FCICF F SFCOSFS S
CCOF F S FFCCCFFF S
CcXXXFSSF SCFCcCFCC S C

SCCCOcaFCC CcC C CCCCccOctF CFC C c cc C

0 S 10 is 0 5 10 1

S Phase 2:
F 39 observations
F
SF
SF5S
FF5S
cc s
cc S

SCCSFF
FCCSCFS S
OOSCFF F

0 S 10 is

'AA

9.6

Figure 14. Overall summary for fault detection rate (# faults
detected per hour).

Phase
1 2 3

Effect Level Mean(SD) Mean(SD) Mean(SD)
Technique Reading 1.90 (1.83) 0.58 (0.48) 3.33 (3.42)

Functional 1.58 (0.90) 1.22 (0.91) 1.84 (1.08)
__ _ Structural 1.40 (0.87) 1.18 (0.84) 1.82 (1.24)
Program Formatter 1.60 1.39) 0.98 (0.67) 2.15 (1.10)

" Plotter 1.19 (0.83) 0.92 (0.71) • G)

____ Data type 2.09 (1.42) .G) 3.70 (3.28)
Database •(.) 1.05 (1.04) 1.14 (0.79)

Expertise Junior 1.38 (0.97) 1.00 (0.85) 2.14 (2.48)
_______Intermed. 2.22 (1.88) 0.98 (0.74) 2.53 (2.48)

Advanced . (.) . (.) 2.38 (1.81)

Figure 15. Characterization of the faults detected.

Code Functional S..;uctural Overall
,._ Reading Testing Testln
Omission 55.8 (40.1) 81.0 (39.5) 39.2 (41.8) 52.0 (41.3)

Commission 54.3 (32.1) 53.5 (25.4) 44.3 (28.6) 50.7 (28.4)
Total 54.1 (29.2) 54.8 (24.5) 41.2 (28.1) 50.0 (27.3)
Initial. 64.8 (40.3) 75. 46.2(39.8) 81.5(40.2)

Control 42.8 (38.8) 86.7 (34.9) 48.8 3.5) 52.8 (37.2)

Data 20.7 (38.8) 28.3 (44.9) 28.8 (41.9) 25.3 (41.0)
Computat. 70.9 (37.0) 84.2 (40.8) 58.8 (43.5) 84.8 (40.8)

Interface 48.7 (38.5) 30.7 (33.5) 24.8 (29.4) 34.1 (35.1)
Cosmetic 18.7 38.1) 8.3 (28.2) 7.7 (27.2) 10.8 (31.3)
Total 54.1 (29.2) 54.8 (24.5) 41.2 (28.1) 50.0 (27.3)

, .*-°

Figure 18. Characterization of faults detected by the three
techniques: 10 omlsslon (0) vs. 24 commission (x). The
vertical axis Is the number of persons using the particular
technique that observed the fault.

Reading Functional Structural

100%
O OxO

xxxx Oxxx Ox
Oxxx x

o x x
75% x xOxxx x

xO x 0
xxx xx xxx
xx xx

x x
50% Oxx

xxxO xOxxx
Ox x
x Ox

xx x
25% Oxx xxx

xxxx xO
O 0

xOOxO OxO0

0% xOOxO xOx Oxx

Figure 17. Characterization of faults detected by the three
techniques: Initialization (2-A), computation (8-P), con-
trol (7-C), data (3-D), interface (13-I), and cosmetic (I-S).
The vertical axis is the number of persons using the par-
ticular technique that observed the fault.

Reading Functional Structural

100%
P PIP

PTMT P1TC PC
CM I
P A P

75% C ACPPC C
AP C P
AlP CC PCP
CC PC

D A
50% CPI

Ii DPII
CP A
D CI

PI I
25% DCI IIC

SPIE H
I D

SIPID CSDI

0% CPID IDI PHI

.o"- .- -

Figure 18. Characterization of the faults observable, but not reported.

Functional Structural Overall
Testing Testing

Omission 15.7 (25.4) 21.3 (31.8) 18.5 (28.8)
Commission 10.1 (20.0) 20.1 (16.6) 19.8 (18.3)
Total 18.1 (17.8) lg.g (16.8) 19.0 (17.3)

Initial. 5.0 (15.4) 14.3 (32.2) 9.8 (25.5)
Control 20.3 (30.0) 21.1 (31.4) 20.7 (30.8)
Data 28.6 (43.5) 7.5 (24.5) 18.3 (38.7)
Computat. 18.0 (31.3) 20.1 (37.6) 18.0 (34.5)
Interface 16.1 (20.0) 20.3 (21.5) 18.2 (20.8)

Cosmetic 60.0(50.3) 8.5.7 (35.9) 73.2 (44.9)

Total 18.1 (17.8) 10.9 (18.8) 19.0 (17.3)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered),

PAGE READ INSTRUCTIONS
REPORT DOCUMENTATION PBEFORE COMPLETING FORM

1. := SYR M 8 r 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

COMPARING THE EFFECTIVENESS OF SOFTWARE
TESTING STRATEGIES Technical Report

6. PERFORMING OG. REPORT NUMBER

TR-1501

7. AUTHOR(&) 6. CONTRACT OR GRANT NUMBER(#)

0
Victor R. Basili and Richard W. Selby, Jr. 4F@F49620-8O-C-00l

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WRORK UNIT NUMBERS

Department of Computer Science /I
University of Maryland
College Park, Maryland 20742 P

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE /
Math. & Info. Sciences, AFOSR May 1985
Bolling AFB 13. NUMBER OF PAGES

Washington, D. C. 20332 67
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlting Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

ia. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

I. SUPPLEMENTARY NOTES

19 K(EY WORDS (Continue on revers, side if necessary and identify by block number)

software testing, functional testing, structural testing, code reading,
off-line software review, empirical study, methodology evaluation,
software measurement

20 ABSTRACT 'Co.ninue on reverse idse If necessary and Identify by block number) This study compares the
strategies of code reading, functional testing, and structural testing in
three aspects of software testing: fault detection effectiveness, fault
detection cost, and classes of faults detected. Thirty-two professional
programmers and 42 advanced students a-plied the three techniques to four
unit-sized programs in a fractional factorial experimental design. The major
results of this study are the following. 1) With the professional programmers,
code reading detected more software faults and had a higher fault detection

DD , A11173 1473 EDITION OF I NOV GS IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE eWhen Data Entred)

,. -... .-. . . . - -. -

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Ihan Date En'tered)

rate than did functional or structural testing, while functional testing
detected more faults than did structural testing, but functional and struc-
tural testing were not different in fault detection rate. 2) In one advanced
student subject group, code reading and functional testing were not different
in faults found, but were both superior to structural testing, while in the
other advanced student subject group there was no difference among the tech-
niques. 3) With the advanced student subjects, the three techniques were not
different in fault detection rate. 4) Number of faults observed, fault
detection rate, and total effort in detection depended on the type of software
tested. 5) Code reading detected more interface faults than did the other
methods. 6) Functional testing detected more control faults than did the
other methods. 7) When asked to estimate the percentage of faults detected,
code readers gave the most accurate estimates while functional testers gave
the least accurate estimates.

qJ

UNCLASSIFIED
SECuR!TY CLAS31FICATION4 OF ?T ' PAGErWh~rI Data Entered)

-.72.- .-- . - ~ -- -- 9.8 ~-%- - ~ a. .. " .a

FILMED

12-85

DTIC
8**%

